Department of Electrical Engineering, KAIST, Daejeon, Korea.
Phys Med Biol. 2013 Oct 21;58(20):7355-74. doi: 10.1088/0031-9155/58/20/7355. Epub 2013 Sep 27.
Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images.
正电子发射断层扫描(PET)广泛用于放射治疗的诊断和随访评估。然而,由于呼吸运动,胸部和腹部的 PET 存在假分期和病变放射性摄取的定量错误。此外,呼吸运动引起的 CT 衰减图与 PET 数据之间的不匹配常常导致重建的 PET 图像中出现明显的伪影。为了解决这些问题,我们提出了一种用于呼吸门控 PET 的呼吸匹配衰减校正和运动补偿的统一框架。对于衰减校正,所提出的算法从两个低剂量吸气和呼气 CT 图像虚拟生成的 4D CT 图像中进行操作,而不是使用真实的 4D CT 图像,这会显著增加患者的辐射负担。它还利用 CT 驱动的运动场进行运动补偿。为了实现所提出的算法,我们提出了一种改进的基于区域的体 CT 图像之间的非刚性配准方法,并且我们提出了一种 3D CT 图像的选择方案,这些图像与每个呼吸门控正弦图相呼吸匹配。在这项工作中,通过使用包括肺和/或肝病变的患者数据集,对所提出的算法进行了定性和定量评估。实验结果表明,该方法通过使用两个低剂量 CT 图像,能够比现有算法提供更清晰的器官边界和更准确的病变信息。