Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
Nucleic Acids Res. 2014 Jan;42(1):622-30. doi: 10.1093/nar/gkt868. Epub 2013 Sep 26.
Previously, we described a novel pH-responsive RNA element in Escherichia coli that resides in the 5' untranslated region of the alx gene and controls its translation in a pH-dependent manner. Under normal growth conditions, this RNA region forms a translationally inactive structure, but when transcribed under alkaline conditions, it forms an active structure producing the Alx protein. We identified two distinct transcriptional pause sites and proposed that pausing at these sites interfered with the formation of the inactive structure while facilitating folding of the active one. Alkali increases the longevity of pausing at these sites, thereby promoting folding of the translationally active form of alx RNA. We show here that mutations that modify the extent and/or position of pausing, although silent with regard to structure stability per se, greatly influence the dynamics of folding and thereby translation. Our data illustrate the mechanistic design of alx regulation, relying on precise temporal and spatial characteristics. We propose that this unique design provides an opportunity for environmental signals such as pH to introduce structural changes in the RNA and thereby modulate expression.
先前,我们描述了一种新型的 pH 响应性 RNA 元件,其存在于大肠杆菌 alx 基因的 5'非翻译区,以 pH 依赖的方式控制其翻译。在正常生长条件下,该 RNA 区域形成一种翻译失活的结构,但在碱性条件下转录时,它形成一种活性结构,产生 Alx 蛋白。我们鉴定了两个不同的转录暂停位点,并提出暂停在这些位点上干扰了无活性结构的形成,同时促进了活性结构的折叠。碱度增加了这些位点暂停的持久性,从而促进了 alx RNA 翻译活性形式的折叠。我们在这里表明,尽管对结构稳定性本身没有沉默作用,但改变暂停的程度和/或位置的突变极大地影响了折叠和翻译的动力学。我们的数据说明了 alx 调控的机制设计,依赖于精确的时间和空间特征。我们提出,这种独特的设计为环境信号(如 pH)提供了一个机会,使 RNA 发生结构变化,从而调节表达。