Suppr超能文献

探究用于钠离子电池的 SnO2 纳米线的失效机制。

Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries.

机构信息

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.

出版信息

Nano Lett. 2013 Nov 13;13(11):5203-11. doi: 10.1021/nl402633n. Epub 2013 Oct 2.

Abstract

Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515 - 1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na(+) diffuses 30 times slower than Li(+) in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

摘要

非锂离子金属如钠作为可充电电池的潜在载流子离子引起了广泛关注。我们使用原位透射电子显微镜结合密度泛函理论计算,研究了钠离子电池中 SnO2 纳米线负极的结构和化学演变,并与锂离子电池的结果进行了定量比较(Huang, J. Y.; 等人。科学 2010, 330, 1515 - 1520)。当钠离子插入 SnO2 中时,会发生位移反应,形成分散在 Na2O 基体中的非晶态 NaxSn 纳米颗粒。随着进一步插入钠离子,NaxSn 结晶为 Na15Sn4(x = 3.75)。当钠离子被提取(脱钠)时,NaxSn 转化为 Sn 纳米颗粒。伴随着脱合金化,发现形成了孔,导致 Sn 颗粒被限制在 Na2O 的空心基质中。这些孔极大地增加了电阻,因此导致 SnO2 的循环性能较差。DFT 计算表明,Na(+)在 SnO2 中的扩散速度比 Li(+)慢 30 倍,与原位 TEM 测量结果一致。钠离子的插入可以在更大程度上使反应产物发生化学机械软化,而不是在锂化过程中。因此,与 SnO2 的锂化相比,在钠化前沿之前观察到的位错塑性变形要小得多。钠离子和锂离子结果的直接比较突出了不同离子物种的离子尺寸和电子结构对这些电池的充放电速率和失效机制的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验