Suppr超能文献

基于直方图的聚类算法与支持向量机相结合用于骨质疏松症的诊断

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis.

作者信息

Kavitha Muthu Subash, Asano Akira, Taguchi Akira, Heo Min-Suk

机构信息

Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea. ; Graduate School of Engineering, Hiroshima University, Hiroshima, Japan.

出版信息

Imaging Sci Dent. 2013 Sep;43(3):153-61. doi: 10.5624/isd.2013.43.3.153. Epub 2013 Sep 23.

Abstract

PURPOSE

To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis.

MATERIALS AND METHODS

We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion.

RESULTS

The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck.

CONCLUSION

Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

摘要

目的

为预防绝经后女性的低骨密度(BMD),即骨质疏松症,更精确地诊断骨质疏松症至关重要。本研究提出了一种自动方法,利用基于直方图的自动聚类(HAC)算法和支持向量机(SVM)来分析牙科全景X线片(DPR),从而通过识别低骨密度或骨质疏松症的绝经后女性来提高诊断准确性。

材料与方法

我们将新提出的基于直方图的自动聚类(HAC)算法与先前设计的计算机辅助诊断系统相结合。采用提取的下颌骨皮质宽度基于矩的特征(均值、方差、偏度和峰度)用于径向基函数(RBF)支持向量机分类器。我们还比较了支持向量机模型与反向传播(BP)神经网络模型的诊断效果。在本研究中,随机选择了100例无骨质疏松症既往记录的绝经后女性患者(年龄>50岁)的DPR和骨密度测量值纳入研究。

结果

使用我们的HAC-SVM模型识别低骨密度女性的骨密度测量的准确性、敏感性和特异性在腰椎分别为93.0%(88.0%-98.0%)、95.8%(91.9%-99.7%)和86.6%(79.9%-93.3%);在股骨颈分别为89.0%(82.9%-95.1%)、96.0%(92.2%-99.8%)和84.0%(76.8%-91.2%)。

结论

我们的实验结果预测,应用于DPR的所提出的HAC-SVM模型组合可能有助于协助牙医进行早期诊断,并有助于降低与低骨密度和骨质疏松症相关的发病率和死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab7/3784674/a0a8c4e70bc4/isd-43-153-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验