Suppr超能文献

黄酮类化合物对 HCN2 通道的调节。

Flavonoid regulation of HCN2 channels.

机构信息

From the Departments of Physiology and Biophysics and.

出版信息

J Biol Chem. 2013 Nov 15;288(46):33136-45. doi: 10.1074/jbc.M113.501759. Epub 2013 Oct 1.

Abstract

The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μM. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.

摘要

超极化激活环核苷酸调制(HCN)通道是起搏通道,其电流有助于心脏和大脑的节律活动。HCN 通道对超极化电压作出反应而开启,cAMP 与它们的环核苷酸结合域(CNBD)结合有助于通道开启。在这里,我们报告称,类黄酮非瑟酮类似于 cAMP 增强 HCN2 通道门控。非瑟酮加速 HCN2 的激活并将电导-电压关系移至更去极化的电位,半数有效浓度(EC50)为 1.8 μM。当两者同时应用时,非瑟酮和 cAMP 以非累加方式调节 HCN2 门控。缺乏 CNBD 的 HCN2 通道不能被非瑟酮增强,并且两项独立的基于荧光的结合测定报告称非瑟酮与纯化的 CNBD 结合。这些数据表明 CNBD 介导了非瑟酮对 HCN2 通道的增强作用。此外,结合测定表明非瑟酮和 cAMP 部分竞争与 CNBD 的结合。NMR 实验表明,非瑟酮结合在 cAMP 结合口袋内,与 cAMP 相互作用的一些相同残基结合。总之,这些数据表明非瑟酮是 HCN2 通道的部分激动剂。

相似文献

1
Flavonoid regulation of HCN2 channels.
J Biol Chem. 2013 Nov 15;288(46):33136-45. doi: 10.1074/jbc.M113.501759. Epub 2013 Oct 1.
3
The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms.
J Biol Chem. 2020 Jun 12;295(24):8164-8173. doi: 10.1074/jbc.RA120.013281. Epub 2020 Apr 27.
4
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14577-82. doi: 10.1073/pnas.1410389111. Epub 2014 Sep 2.
7
Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides.
J Biol Chem. 2016 Jan 1;291(1):371-81. doi: 10.1074/jbc.M115.696450. Epub 2015 Nov 11.
10
Mechanism for the inhibition of the cAMP dependence of HCN ion channels by the auxiliary subunit TRIP8b.
J Biol Chem. 2017 Oct 27;292(43):17794-17803. doi: 10.1074/jbc.M117.800722. Epub 2017 Sep 1.

引用本文的文献

1
Cannabidiol potentiates hyperpolarization-activated cyclic nucleotide-gated (HCN4) channels.
J Gen Physiol. 2024 Jun 3;156(6). doi: 10.1085/jgp.202313505. Epub 2024 Apr 23.
2
Fisetin decreases the duration of ictal-like discharges in mouse hippocampal slices.
J Biol Phys. 2022 Sep;48(3):355-368. doi: 10.1007/s10867-022-09612-0. Epub 2022 Aug 10.
3
Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels.
Front Mol Neurosci. 2021 Jun 3;14:658435. doi: 10.3389/fnmol.2021.658435. eCollection 2021.
4
Paul F. Cranefield Award to Anne E. Carlson.
J Gen Physiol. 2019 Sep 2;151(9):1059-1060. doi: 10.1085/jgp.201912433. Epub 2019 Aug 12.
5
Evolution and Structural Characteristics of Plant Voltage-Gated K Channels.
Plant Cell. 2018 Dec;30(12):2898-2909. doi: 10.1105/tpc.18.00523. Epub 2018 Nov 1.
7
HCN Channels Modulators: The Need for Selectivity.
Curr Top Med Chem. 2016;16(16):1764-91. doi: 10.2174/1568026616999160315130832.
8
Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides.
J Biol Chem. 2016 Jan 1;291(1):371-81. doi: 10.1074/jbc.M115.696450. Epub 2015 Nov 11.

本文引用的文献

1
Structure of the C-terminal region of an ERG channel and functional implications.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11648-53. doi: 10.1073/pnas.1306887110. Epub 2013 Jun 25.
2
Flavonoid regulation of EAG1 channels.
J Gen Physiol. 2013 Mar;141(3):347-58. doi: 10.1085/jgp.201210900.
4
NMR View: A computer program for the visualization and analysis of NMR data.
J Biomol NMR. 1994 Sep;4(5):603-14. doi: 10.1007/BF00404272.
6
Structure of the carboxy-terminal region of a KCNH channel.
Nature. 2012 Jan 9;481(7382):530-3. doi: 10.1038/nature10735.
8
Energetics of cyclic AMP binding to HCN channel C terminus reveal negative cooperativity.
J Biol Chem. 2012 Jan 2;287(1):600-606. doi: 10.1074/jbc.M111.269563. Epub 2011 Nov 14.
10
HCN2 ion channels play a central role in inflammatory and neuropathic pain.
Science. 2011 Sep 9;333(6048):1462-6. doi: 10.1126/science.1206243.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验