Suppr超能文献

将基于持久长度的二级结构纳入杂多聚体冷冻的副本场理论模型中。

Inclusion of persistence length-based secondary structure in replica field theoretic models of heteropolymer freezing.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

J Chem Phys. 2013 Sep 28;139(12):121917. doi: 10.1063/1.4816633.

Abstract

The protein folding problem has long represented a "holy grail" in statistical physics due to its physical complexity and its relevance to many human diseases. While past theoretical work has yielded apt descriptions of protein folding landscapes, recent large-scale simulations have provided insights into protein folding that were impractical to obtain from early theories. In particular, the role that non-native contacts play in protein folding, and their relation to the existence of misfolded, β-sheet rich trap states on folding landscapes, has emerged as a topic of interest in the field. In this paper, we present a modified model of heteropolymer freezing that includes explicit secondary structural characteristics which allow observations of "intramolecular amyloid" states to be probed from a theoretical perspective. We introduce a variable persistence length-based energy penalty to a model Hamiltonian, and we illustrate how this modification alters the phase transitions present in the theory. We find, in particular, that inclusion of this variable persistence length increases both generic freezing and folding temperatures in the model, allowing both folding and glass transitions to occur in a more highly optimized fashion. We go on to discuss how these changes might relate to protein evolution, misfolding, and the emergence of intramolecular amyloid states.

摘要

蛋白质折叠问题长期以来一直是统计物理学中的“圣杯”,因为它具有物理复杂性,并且与许多人类疾病有关。虽然过去的理论工作已经对蛋白质折叠景观进行了恰当的描述,但最近的大规模模拟为蛋白质折叠提供了一些见解,这些见解是早期理论难以获得的。特别是,非天然接触在蛋白质折叠中的作用,以及它们与折叠景观上存在错误折叠的富含β-折叠的陷阱状态之间的关系,已成为该领域的一个研究热点。在本文中,我们提出了一个改进的杂多聚物冻结模型,该模型包含了明确的二级结构特征,允许从理论角度探测“分子内淀粉样”状态。我们在模型哈密顿量中引入了一个基于可变持久长度的能量罚分,并说明了这种修改如何改变理论中的相变。我们特别发现,包含这种可变持久长度会增加模型中的通用冻结和折叠温度,从而使折叠和玻璃化转变以更优化的方式发生。我们接着讨论了这些变化如何与蛋白质进化、错误折叠和分子内淀粉样状态的出现相关。

相似文献

引用本文的文献

1
Perspective: Reaches of chemical physics in biology.观点:生物化学物理学的范围。
J Chem Phys. 2013 Sep 28;139(12):121701. doi: 10.1063/1.4820139.

本文引用的文献

2
Simple few-state models reveal hidden complexity in protein folding.简单的少体模型揭示了蛋白质折叠中的隐藏复杂性。
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17807-13. doi: 10.1073/pnas.1201810109. Epub 2012 Jul 9.
3
The fast and the slow: folding and trapping of λ6-85.快速与缓慢:λ6-85 的折叠与捕获。
J Am Chem Soc. 2011 Dec 7;133(48):19338-41. doi: 10.1021/ja209073z. Epub 2011 Nov 14.
4
How fast-folding proteins fold.快速折叠蛋白如何折叠。
Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.
6
Simple theory of protein folding kinetics.蛋白质折叠动力学的简单理论。
Phys Rev Lett. 2010 Nov 5;105(19):198101. doi: 10.1103/PhysRevLett.105.198101.
8
Protein folded states are kinetic hubs.蛋白质折叠状态是动力学枢纽。
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10890-5. doi: 10.1073/pnas.1003962107. Epub 2010 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验