Suppr超能文献

基于生物力学建模的四维锥形束 CT 重建中同时运动估计和图像重建技术(SMEIR-Bio)。

A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction.

机构信息

Xiaokun Huang and You Zhang contributed equally to the work.

出版信息

Phys Med Biol. 2018 Feb 8;63(4):045002. doi: 10.1088/1361-6560/aaa730.

Abstract

Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ's fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model's accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

摘要

直接从呼吸相位分类的传统 3D-CBCT 投影重建四维锥形束 CT(4D-CBCT)图像可以捕捉目标运动轨迹,减少运动伪影,降低成像剂量和时间。然而,相位分类后每个相位中的投影数量有限,会降低传统重建技术下的 CBCT 图像质量。为了解决这个问题,我们开发了一种同时运动估计和图像重建(SMEIR)算法,这是一种迭代方法,可以使用相位间强度驱动运动模型从有限的投影重建更高质量的 4D-CBCT 图像。然而,强度驱动运动模型的准确性在具有精细细节的区域受到限制,由于投影数量不足,这些区域的质量会下降,从而导致相应区域的重建图像质量下降。在这项研究中,我们通过将生物力学建模引入 SMEIR(SMEIR-Bio)中开发了一种新的 4D-CBCT 重建算法,以提高具有小精细结构区域的运动模型的准确性。生物力学建模使用四面体网格来模拟感兴趣的器官,并使用组织弹性参数和网格边界条件来求解内部器官运动。这种物理驱动的方法提高了器官精细结构区域中求解运动的准确性。这项研究使用了 11 个肺部患者病例来评估 SMEIR-Bio 的性能,对 SMEIR-Bio、SMEIR 和具有总变分正则化的代数重建技术(ART-TV)进行了定性和定量比较。重建结果表明,SMEIR-Bio 提高了包含小精细细节区域的运动模型的准确性,从而提高了重建的 4D-CBCT 图像的准确性和质量。

相似文献

9
High-quality initial image-guided 4D CBCT reconstruction.高质量的初始图像引导 4D CBCT 重建。
Med Phys. 2020 Jun;47(5):2099-2115. doi: 10.1002/mp.14060. Epub 2020 Mar 13.

本文引用的文献

10
High-quality four-dimensional cone-beam CT by deforming prior images.基于变形先验图像的高质量四维锥形束 CT
Phys Med Biol. 2013 Jan 21;58(2):231-46. doi: 10.1088/0031-9155/58/2/231. Epub 2012 Dec 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验