Biomedical Engineering, Yale University, New Haven, Connecticut 06520.
Med Phys. 2013 Oct;40(10):102503. doi: 10.1118/1.4819820.
Motion correction in PET has become more important as system resolution has improved. The purpose of this study was to evaluate the accuracy of event-by-event and frame-based MC methods in human brain PET imaging.
Motion compensated image reconstructions were performed with static and dynamic simulated high resolution research tomograph data with frame-based image reconstructions, using a range of measured human head motion data. Image intensities in high-contrast regions of interest (ROI) and parameter estimates in tracer kinetic models were assessed to evaluate the accuracy of the motion correction methods.
Given accurate motion data, event-by-event motion correction can reliably correct for head motions. The average ROI intensities and the kinetic parameter estimates VT and BPND were comparable to the true values. The frame-based motion correction methods with correctly aligned attenuation map using the average of externally acquired motion data or motion data derived from image registration give comparable quantitative accuracy. For large intraframe (>5 mm) motion, the frame-based methods produced ≈ 9% bias in ROI intensities, ≈ 5% in VT, and ≈ 10% in BPND estimates. In addition, in real studies that lack a ground truth, the normalized weighted residual sum of squared difference is a potential figure-of-merit to evaluate the accuracy of motion correction methods.
The authors conclude that frame-based motion correction methods are accurate when the intraframe motion is less than 5 mm and when the attenuation map is accurately aligned. Given accurate motion data, event-by-event motion correction can reliably correct for head motion in human brain PET studies.
随着系统分辨率的提高,PET 中的运动校正变得越来越重要。本研究的目的是评估事件和基于帧的 MC 方法在人脑 PET 成像中的准确性。
使用基于帧的图像重建,对具有基于帧图像重建的静态和动态模拟高分辨率研究断层扫描数据进行运动补偿图像重建,使用一系列测量的人头部运动数据。评估高对比度感兴趣区(ROI)的图像强度和示踪剂动力学模型中的参数估计,以评估运动校正方法的准确性。
给定准确的运动数据,事件驱动的运动校正可以可靠地校正头部运动。ROI 强度的平均区域、VT 和 BPND 的动力学参数估计与真实值相当。使用外部获取的运动数据或从图像配准中得出的运动数据的平均正确对准衰减图的基于帧的运动校正方法具有可比的定量准确性。对于帧内(>5mm)大运动,基于帧的方法产生的 ROI 强度偏差约为 9%,VT 偏差约为 5%,BPND 估计偏差约为 10%。此外,在缺乏真实基准的实际研究中,归一化加权残差平方和差是评估运动校正方法准确性的潜在指标。
作者得出结论,当帧内运动小于 5mm 且衰减图准确对准时,基于帧的运动校正方法是准确的。给定准确的运动数据,事件驱动的运动校正可以可靠地校正人脑 PET 研究中的头部运动。