Suppr超能文献

整合和扩展队列研究:从抑郁症治疗、教育和网络扩展研究(xTEND)中获得的经验教训。

Integrating and extending cohort studies: lessons from the eXtending Treatments, Education and Networks in Depression (xTEND) study.

机构信息

Centre for Translational Neuroscience and Mental Health, University of Newcastle and Hunter New England Health, Newcastle, NSW, Australia.

出版信息

BMC Med Res Methodol. 2013 Oct 5;13:122. doi: 10.1186/1471-2288-13-122.

Abstract

BACKGROUND

Epidemiologic studies often struggle to adequately represent populations and outcomes of interest. Differences in methodology, data analysis and research questions often mean that reviews and synthesis of the existing literature have significant limitations. The current paper details our experiences in combining individual participant data from two existing cohort studies to address questions about the influence of social factors on health outcomes within a representative sample of urban to remote areas of Australia. The eXtending Treatments, Education and Networks in Depression study involved pooling individual participant data from the Australian Rural Mental Health Study (T0 N = 2639) and the Hunter Community Study (T0 N = 3253) as well as conducting a common three-year follow-up phase (T1 N = 3513). Pooling these data extended the capacity of these studies by: enabling research questions of common interest to be addressed; facilitating the harmonization of baseline measures; permitting investigation of a range of psychosocial, physical and contextual factors over time; and contributing to the development and implementation of targeted interventions for persons experiencing depression and alcohol issues.

DISCUSSION

The current paper describes the rationale, challenges encountered, and solutions devised by a project aiming to maximise the benefits derived from existing cohort studies. We also highlight opportunities for such individual participant data analyses to assess common assumptions in research synthesis, such as measurement invariance, and opportunities for extending ongoing cohorts by conducting a common follow-up phase.

SUMMARY

Pooling individual participant data can be a worthwhile venture, particularly where adequate representation is beyond the scope of existing research, where the effects of interest are small though important, where events are of relatively low frequency or rarely observed, and where issues are of immediate regional or national interest. Benefits such as these can enhance the utility of existing projects and strengthen requests for further research funding.

摘要

背景

流行病学研究往往难以充分代表目标人群和结果。由于方法学、数据分析和研究问题的差异,对现有文献的综述和综合往往存在重大局限性。本文详细介绍了我们将两项现有队列研究的个体参与者数据合并的经验,以解决关于社会因素对澳大利亚城乡地区代表性样本中健康结果的影响的问题。eXtending Treatments, Education and Networks in Depression 研究将澳大利亚农村心理健康研究(T0 N=2639)和亨特社区研究(T0 N=3253)的个体参与者数据进行了合并,并进行了为期三年的共同随访阶段(T1 N=3513)。合并这些数据通过以下方式扩展了这些研究的能力:能够解决共同感兴趣的研究问题;促进了基线测量的协调;允许随着时间的推移调查一系列心理社会、身体和环境因素;并为正在经历抑郁和酗酒问题的人开发和实施有针对性的干预措施做出了贡献。

讨论

本文描述了一个旨在最大限度地从现有队列研究中获益的项目的基本原理、遇到的挑战和解决方案。我们还强调了这种个体参与者数据分析的机会,以评估研究综合中的常见假设,例如测量不变性,以及通过进行共同的随访阶段来扩展正在进行的队列的机会。

总结

合并个体参与者数据是一项有价值的工作,特别是在现有研究无法充分代表的情况下、在感兴趣的效应虽小但很重要的情况下、在事件相对较少或很少观察到的情况下、以及在具有地区或国家即时利益的情况下。这些好处可以增强现有项目的效用,并加强对进一步研究资金的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7923/3856520/ec0cc07b53f2/1471-2288-13-122-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验