Integrated Technologies Laboratory, Department of Chemical and Food Engineering, Brazil.
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4739-45. doi: 10.1016/j.msec.2013.07.035. Epub 2013 Jul 29.
Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications.
由葡糖醋杆菌(Gluconacetobacter hansenii)生产的细菌纤维素(BC)是一种适合用于生物医学应用的生物聚合物。为了调节 BC 的性质并扩大其作为组织工程底物的用途,主要是以生物膜的形式,在静态培养条件下,将葡萄糖或糊精添加到基于甘露糖醇的 BC 发酵培养基中(分别为 BCGl 和 BCDe)。SEM 图像显示了这两种富集培养基对 BC 膜两侧纤维密度和孔隙率的影响。这两种富集培养基都降低了 BET 表面积、持水能力和再水合速率。傅里叶变换红外(衰减全反射模式)光谱(FTIR-ATR)分析表明 BC 的化学结构没有变化。将 L929 成纤维细胞接种到所有基于 BC 的膜上,并从细胞黏附、增殖和形态等方面进行评估。BCG1 膜表现出最高的生物学性能,有望用于组织工程应用。