J Biomed Opt. 2013 Oct;18(10):106005. doi: 10.1117/1.JBO.18.10.106005.
Optoacoustic (photoacoustic) mesoscopy aims at high-resolution optical imaging of anatomical, functional, and cellular parameters at depths that go well beyond those of optical-resolution optical or optoacoustic microscopy i.e., reaching several millimeters in depth. The approach utilizes tomography to achieve ultrasonic-diffraction resolution and operates at high-ultrasound frequencies (20 to 200 MHz) induced by few-nanosecond laser pulse excitation of tissues. We investigated here the performance of optoacoustic mesoscopy implemented at 24 MHz center frequency and its ability to resolve optical absorption contrast in the mouse kidney ex vivo. The developed system achieved better than 30 μm in-plane resolution and 110 μm elevation resolution over a cylindrical volume of 9-mm diameter and 9-mm height. This unprecedented combination of resolution and depth was achieved by implementing a translate-rotate detection geometry and by tomographic reconstruction. The approach yielded images of optically absorbing structures with a level of detail never-before visualized in an intact mouse kidney and allows insights into their unperturbed architecture. We discuss the ability to offer multispectral acquisitions and enable in vivo imaging.
光声(光声)介观成像旨在对解剖学、功能和细胞参数进行高分辨率光学成像,其深度远远超过光学分辨率光学或光声显微镜的深度,即达到数毫米的深度。该方法利用层析成像来实现超声衍射分辨率,并在组织的纳秒激光脉冲激发下以高超声频率(20 至 200 MHz)运行。我们在这里研究了在 24 MHz 中心频率下实现的光声介观成像的性能及其在离体小鼠肾脏中分辨光学吸收对比度的能力。所开发的系统在 9 毫米直径和 9 毫米高的圆柱体内实现了优于 30 μm 的面内分辨率和 110 μm 的高度分辨率。这种前所未有的分辨率和深度的组合是通过实现平移-旋转检测几何结构和层析重建来实现的。该方法生成了以前在完整的小鼠肾脏中从未可视化过的具有详细程度的吸收结构图像,并允许深入了解其未受干扰的结构。我们讨论了提供多光谱采集和实现体内成像的能力。