Jeong Joo Hee, Lee Kwang-Sig, Park Seong-Mi, Kim So Ree, Kim Mi-Na, Chae Shung Chull, Hur Seung-Ho, Seong In Whan, Oh Seok Kyu, Ahn Tae Hoon, Jeong Myung Ho
Division of Cardiology, Department of Internal Medicine, Anam Hospital, Korea University Medicine, Seoul, Republic of Korea.
Korea University College of Medicine, AI Center, Anam Hospital, Seoul, Republic of Korea.
Front Cardiovasc Med. 2024 Apr 5;11:1340022. doi: 10.3389/fcvm.2024.1340022. eCollection 2024.
Several regression-based models for predicting outcomes after acute myocardial infarction (AMI) have been developed. However, prediction models that encompass diverse patient-related factors over time are limited. This study aimed to develop a machine learning-based model to predict longitudinal outcomes after AMI. This study was based on a nationwide prospective registry of AMI in Korea ( = 13,104). Seventy-seven predictor candidates from prehospitalization to 1 year of follow-up were included, and six machine learning approaches were analyzed. Primary outcome was defined as 1-year all-cause death. Secondary outcomes included all-cause deaths, cardiovascular deaths, and major adverse cardiovascular event (MACE) at the 1-year and 3-year follow-ups. Random forest resulted best performance in predicting the primary outcome, exhibiting a 99.6% accuracy along with an area under the receiver-operating characteristic curve of 0.874. Top 10 predictors for the primary outcome included peak troponin-I (variable importance value = 0.048), in-hospital duration (0.047), total cholesterol (0.047), maintenance of antiplatelet at 1 year (0.045), coronary lesion classification (0.043), N-terminal pro-brain natriuretic peptide levels (0.039), body mass index (BMI) (0.037), door-to-balloon time (0.035), vascular approach (0.033), and use of glycoprotein IIb/IIIa inhibitor (0.032). Notably, BMI was identified as one of the most important predictors of major outcomes after AMI. BMI revealed distinct effects on each outcome, highlighting a U-shaped influence on 1-year and 3-year MACE and 3-year all-cause death. Diverse time-dependent variables from prehospitalization to the postdischarge period influenced the major outcomes after AMI. Understanding the complexity and dynamic associations of risk factors may facilitate clinical interventions in patients with AMI.
已经开发了几种基于回归的模型来预测急性心肌梗死(AMI)后的结局。然而,能够长期涵盖多种患者相关因素的预测模型却很有限。本研究旨在开发一种基于机器学习的模型来预测AMI后的纵向结局。本研究基于韩国一项全国性的AMI前瞻性登记研究(n = 13104)。纳入了从院前到随访1年的77个预测指标候选因素,并分析了六种机器学习方法。主要结局定义为1年全因死亡。次要结局包括1年和3年随访时的全因死亡、心血管死亡以及主要不良心血管事件(MACE)。随机森林在预测主要结局方面表现最佳,准确率达99.6%,受试者工作特征曲线下面积为0.874。主要结局的前10个预测因素包括肌钙蛋白I峰值(变量重要性值 = 0.048)、住院时长(0.047)、总胆固醇(0.047)、1年时抗血小板药物维持使用情况(0.045)、冠状动脉病变分类(0.043)、N末端脑钠肽前体水平(0.039)、体重指数(BMI)(0.037)、门球时间(0.035)、血管入路(0.033)以及糖蛋白IIb/IIIa抑制剂的使用(0.032)。值得注意的是,BMI被确定为AMI后主要结局的最重要预测因素之一。BMI对每种结局都显示出不同的影响,突出了其对1年和3年MACE以及3年全因死亡呈U形影响。从院前到出院后阶段的多种时间依赖性变量影响了AMI后的主要结局。了解危险因素的复杂性和动态关联可能有助于对AMI患者进行临床干预。