Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
Eur J Med Res. 2023 Oct 20;28(1):451. doi: 10.1186/s40001-023-01027-4.
Acute coronary syndromes (ACS) are the leading cause of global death. Optimizing mortality risk prediction and early identification of high-risk patients is essential for developing targeted prevention strategies. Many researchers have built machine learning (ML) models to predict the mortality risk in ACS patients. Our meta-analysis aimed to evaluate the predictive value of various ML models in predicting death in ACS patients at different times.
PubMed, Embase, Web of Science, and Cochrane Library were searched systematically from database establishment to March 12, 2022 for studies developing or validating at least one ML predictive model for death in ACS patients. We used PROBAST to assess the risk of bias in the reported predictive models and a random-effects model to assess the pooled C-index and accuracy of these models.
Fifty papers were included, involving 216 ML prediction models, 119 of which were externally validated. The combined C-index of the ML models in the validation cohort predicting the in-hospital mortality, 30-day mortality, 3- or 6-month mortality, and 1 year or above mortality in ACS patients were 0.8633 (95% CI 0.8467-0.8802), 0.8296 (95% CI 0.8134-0.8462), 0.8205 (95% CI 0.7881-0.8541), and 0.8197 (95% CI 0.8042-0.8354), respectively, with the corresponding combined accuracy of 0.8569 (95% CI 0.8411-0.8715), 0.8282 (95% CI 0.7922-0.8591), 0.7303 (95% CI 0.7184-0.7418), and 0.7837 (95% CI 0.7455-0.8175), indicating that the ML models were relatively excellent in predicting ACS mortality at different times. Furthermore, common predictors of death in ML models included age, sex, systolic blood pressure, serum creatinine, Killip class, heart rate, diastolic blood pressure, blood glucose, and hemoglobin.
The ML models had excellent predictive power for mortality in ACS, and the methodologies may need to be addressed before they can be used in clinical practice.
急性冠状动脉综合征(ACS)是全球死亡的主要原因。优化死亡率风险预测和高危患者的早期识别对于制定有针对性的预防策略至关重要。许多研究人员已经构建了机器学习(ML)模型来预测 ACS 患者的死亡风险。我们的荟萃分析旨在评估各种 ML 模型在不同时间预测 ACS 患者死亡的预测价值。
从数据库建立到 2022 年 3 月 12 日,系统地检索了 PubMed、Embase、Web of Science 和 Cochrane Library 中的研究,这些研究开发或验证了至少一种用于预测 ACS 患者死亡的 ML 预测模型。我们使用 PROBAST 评估报告的预测模型的偏倚风险,并使用随机效应模型评估这些模型的合并 C 指数和准确性。
共纳入 50 篇文献,涉及 216 个 ML 预测模型,其中 119 个模型进行了外部验证。在验证队列中,ML 模型预测 ACS 患者住院死亡率、30 天死亡率、3 至 6 个月死亡率和 1 年及以上死亡率的合并 C 指数分别为 0.8633(95%CI 0.8467-0.8802)、0.8296(95%CI 0.8134-0.8462)、0.8205(95%CI 0.7881-0.8541)和 0.8197(95%CI 0.8042-0.8354),相应的合并准确率分别为 0.8569(95%CI 0.8411-0.8715)、0.8282(95%CI 0.7922-0.8591)、0.7303(95%CI 0.7184-0.7418)和 0.7837(95%CI 0.7455-0.8175),表明 ML 模型在不同时间预测 ACS 死亡率的性能相对较好。此外,ML 模型中死亡的常见预测因素包括年龄、性别、收缩压、血清肌酐、Killip 分级、心率、舒张压、血糖和血红蛋白。
ML 模型对 ACS 死亡率具有出色的预测能力,在临床实践中应用之前可能需要解决其方法学问题。