Suppr超能文献

幽门螺杆菌甲硫氨酸亚砜还原酶修复烷基氢过氧化物还原酶。

Alkyl hydroperoxide reductase repair by Helicobacter pylori methionine sulfoxide reductase.

机构信息

Department of Microbiology.

出版信息

J Bacteriol. 2013 Dec;195(23):5396-401. doi: 10.1128/JB.01001-13. Epub 2013 Oct 4.

Abstract

Protein exposure to oxidants such as HOCl leads to formation of methionine sulfoxide (MetSO) residues, which can be repaired by methionine sulfoxide reductase (Msr). A Helicobacter pylori msr strain was more sensitive to HOCl-mediated killing than the parent. Because of its abundance in H. pylori and its high methionine content, alkyl hydroperoxide reductase C (AhpC) was hypothesized to be prone to methionine oxidation. AhpC was expressed as a recombinant protein in Escherichia coli. AhpC activity was abolished by HOCl, while all six methionine residues of the enzyme were fully to partially oxidized. Upon incubation with a Msr repair mixture, AhpC activity was restored to nonoxidized levels and the MetSO residues were repaired to methionine, albeit to different degrees. The two most highly oxidized and then Msr-repaired methionine residues in AhpC, Met101 and Met133, were replaced with isoleucine residues by site-directed mutagenesis, either individually or together. E. coli cells expressing variant versions were more sensitive to t-butyl hydroperoxide than cells expressing native protein, and purified AhpC variant proteins had 5% to 39% of the native enzyme activity. Variant proteins were still able to oligomerize like the native version, and circular dichroism (CD) spectra of variant proteins revealed no significant change in AhpC conformation, indicating that the loss of activity in these variants was not related to major structural alterations. Our results suggest that both Met101 and Met133 residues are important for AhpC catalytic activity and that their integrity relies on the presence of a functional Msr.

摘要

蛋白质暴露于氧化剂(如 HOCl)会导致蛋氨酸残基氧化为亚砜(MetSO),这种氧化可以被蛋氨酸亚砜还原酶(Msr)修复。与亲本相比,幽门螺杆菌 msr 缺失菌株对 HOCl 介导的杀伤更为敏感。由于其在幽门螺杆菌中的丰度及其高蛋氨酸含量,烷基氢过氧化物还原酶 C(AhpC)被认为容易发生蛋氨酸氧化。AhpC 作为重组蛋白在大肠杆菌中表达。HOCl 使 AhpC 失活,而酶的六个蛋氨酸残基全部或部分被氧化。与 Msr 修复混合物孵育后,AhpC 活性恢复到非氧化水平,MetSO 残基被修复为蛋氨酸,尽管程度不同。AhpC 中两个最易氧化且随后被 Msr 修复的蛋氨酸残基,Met101 和 Met133,通过定点突变分别或一起被异亮氨酸残基取代。表达变异体的大肠杆菌细胞比表达天然蛋白的细胞对叔丁基过氧化氢更敏感,并且纯化的 AhpC 变异蛋白的活性为天然酶的 5%至 39%。变异蛋白仍然能够像天然版本一样聚合,并且变异蛋白的圆二色性(CD)光谱显示 AhpC 构象没有明显变化,表明这些变异体活性丧失与主要结构改变无关。我们的结果表明,Met101 和 Met133 残基对 AhpC 催化活性都很重要,其完整性依赖于功能性 Msr 的存在。

相似文献

1
Alkyl hydroperoxide reductase repair by Helicobacter pylori methionine sulfoxide reductase.
J Bacteriol. 2013 Dec;195(23):5396-401. doi: 10.1128/JB.01001-13. Epub 2013 Oct 4.
2
Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase.
J Biol Chem. 2011 May 27;286(21):19159-69. doi: 10.1074/jbc.M111.223677. Epub 2011 Apr 1.
3
Noncatalytic Antioxidant Role for Helicobacter pylori Urease.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00124-18. Print 2018 Sep 1.
6
Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation.
Biochem J. 2013 Feb 15;450(1):141-8. doi: 10.1042/BJ20121434.
8
Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori.
Mol Microbiol. 2004 Sep;53(5):1397-406. doi: 10.1111/j.1365-2958.2004.04190.x.
9
Lipid peroxidation as a source of oxidative damage in Helicobacter pylori: protective roles of peroxiredoxins.
Biochim Biophys Acta. 2006 Nov;1760(11):1596-603. doi: 10.1016/j.bbagen.2006.05.005. Epub 2006 May 24.
10
The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2552-7. doi: 10.1073/pnas.0510770103. Epub 2006 Feb 15.

引用本文的文献

2
Methionine Redox Homeostasis in Protein Quality Control.
Front Mol Biosci. 2021 Apr 13;8:665492. doi: 10.3389/fmolb.2021.665492. eCollection 2021.
3
Identification of oxidant susceptible proteins in Salmonella Typhimurium.
Mol Biol Rep. 2020 Mar;47(3):2231-2242. doi: 10.1007/s11033-020-05328-3. Epub 2020 Feb 19.
4
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling.
Antioxidants (Basel). 2018 Aug 29;7(9):114. doi: 10.3390/antiox7090114.
5
Noncatalytic Antioxidant Role for Helicobacter pylori Urease.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00124-18. Print 2018 Sep 1.
6
Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization.
Helicobacter. 2018 Jun;23(3):e12490. doi: 10.1111/hel.12490. Epub 2018 Apr 25.
7
Oxidative stress, protein damage and repair in bacteria.
Nat Rev Microbiol. 2017 Jul;15(7):385-396. doi: 10.1038/nrmicro.2017.26. Epub 2017 Apr 19.
9
A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of in an Model of Infection.
Front Microbiol. 2016 Nov 14;7:1743. doi: 10.3389/fmicb.2016.01743. eCollection 2016.
10
Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.
J Biol Chem. 2016 Nov 4;291(45):23366-23373. doi: 10.1074/jbc.M116.747881. Epub 2016 Sep 7.

本文引用的文献

1
Methionine oxidation activates a transcription factor in response to oxidative stress.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9493-8. doi: 10.1073/pnas.1300578110. Epub 2013 May 20.
2
Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation.
Biochem J. 2013 Feb 15;450(1):141-8. doi: 10.1042/BJ20121434.
3
AhpC is required for optimal production of enterobactin by Escherichia coli.
J Bacteriol. 2012 Dec;194(24):6748-57. doi: 10.1128/JB.01574-12. Epub 2012 Oct 5.
4
Helicobacter pylori defense against oxidative attack.
Am J Physiol Gastrointest Liver Physiol. 2012 Mar 15;302(6):G579-87. doi: 10.1152/ajpgi.00495.2011. Epub 2011 Dec 22.
5
Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase.
J Biol Chem. 2011 May 27;286(21):19159-69. doi: 10.1074/jbc.M111.223677. Epub 2011 Apr 1.
7
Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18686-91. doi: 10.1073/pnas.0909464106. Epub 2009 Oct 15.
9
Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
Cell. 2008 Nov 14;135(4):691-701. doi: 10.1016/j.cell.2008.09.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验