BioTechnology Institute.
J Bacteriol. 2013 Dec;195(24):5479-86. doi: 10.1128/JB.00651-13. Epub 2013 Oct 4.
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.
核黄素(维生素 B2)是黄素单核苷酸和黄素腺嘌呤二核苷酸的前体,这两种核苷酸是许多细胞内氧化还原反应所必需的辅因子。微生物从头合成黄素以满足营养需求,但越来越明显的是,黄素在细胞生理学中的作用比以前认识到的更为广泛。黄素介导的过程不仅限于细胞质膜,还包括铁的获取、细胞外呼吸和种间相互作用。在研究革兰氏阴性γ变形菌希瓦氏菌(Shewanella oneidensis)中黄素电子穿梭生物合成的调控时,我们发现一个被注释为编码双功能 3,4-二羟基-2-丁酮 4-磷酸(DHBP)合酶/GTP 环化水解酶 II 的核黄素生物合成基因(ribBA)实际上并不具有这两种功能。这个新基因在这里被重新命名为 ribBX,它编码一个氨基端的 DHBP 合酶结构域。RibBX 的羧基端不仅缺乏 GTP 环化水解酶 II 活性,而且在希瓦氏菌中完全进化出了一种截然不同的功能,调节 DHBP 合酶结构域的活性。系统发育分析表明,ribBA 被错误注释为 ribBX 的情况在整个 Proteobacteria 门中非常普遍(在 2,173 个注释的 ribBA 基因中占 40%),并且 ribBX 在该微生物组的早期进化中就出现了。我们检查了来自 Beta-、Gamma-和 Epsilonproteobacteria 的代表性 ribBX 基因的功能,结果与基于序列的预测一致,编码的 GTP 环化水解酶 II 结构域缺乏催化活性。如此多的系统发育上不同的细菌物种的基因组中都存在 ribBX,这有力地证明了 ribBX 已经进化出一种赋予宿主选择性优势的功能。