Suppr超能文献

通过龈下微生物群的细胞外电子转移和酸性代谢产物在模拟口腔环境中加速316L不锈钢的腐蚀。

Accelerated corrosion of 316L stainless steel in a simulated oral environment via extracellular electron transfer and acid metabolites of subgingival microbiota.

作者信息

Zheng Ying, Yang Yi, Liu Xianbo, Liu Pan, Li Xiangyu, Zhang Mingxing, Zhou Enze, Zhao Zhenjin, Wang Xue, Zhang Yuanyuan, Zheng Bowen, Yan Yuwen, Liu Yi, Xu Dake, Cao Liu

机构信息

School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.

Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China.

出版信息

Bioact Mater. 2024 Jan 20;35:56-66. doi: 10.1016/j.bioactmat.2024.01.007. eCollection 2024 May.

Abstract

316L stainless steel (SS) is widely applied as microimplant anchorage (MIA) due to its excellent mechanical properties. However, the risk that the oral microorganisms can corrode 316L SS is fully neglected. Microbiologically influenced corrosion (MIC) of 316L SS is essential to the health and safety of all patients because the accelerated corrosion caused by the oral microbiota can trigger the release of Cr and Ni ions. This study investigated the corrosion behavior and mechanism of subgingival microbiota on 316L SS by 16S rRNA and metagenome sequencing, electrochemical measurements, and surface characterization techniques. Multispecies biofilms were formed by the oral subgingival microbiota in the simulated oral anaerobic environment on 316L SS surfaces, significantly accelerating the corrosion in the form of pitting. The microbiota samples collected from the subjects differed in biofilm compositions, corrosion behaviors, and mechanisms. The oral subgingival microbiota contributed to the accelerated corrosion of 316L SS via acidic metabolites and extracellular electron transfer. Our findings provide a new insight into the underlying mechanisms of oral microbial corrosion and guide the design of oral microbial corrosion-resistant materials.

摘要

316L不锈钢(SS)因其优异的力学性能而被广泛用作微种植体支抗(MIA)。然而,口腔微生物会腐蚀316L SS这一风险却被完全忽视了。316L SS的微生物影响腐蚀(MIC)对所有患者的健康和安全至关重要,因为口腔微生物群引起的加速腐蚀会引发铬和镍离子的释放。本研究通过16S rRNA和宏基因组测序、电化学测量以及表面表征技术,研究了龈下微生物群对316L SS的腐蚀行为和机制。在模拟口腔厌氧环境中,口腔龈下微生物群在316L SS表面形成了多物种生物膜,以点蚀的形式显著加速了腐蚀。从受试者收集的微生物群样本在生物膜组成、腐蚀行为和机制方面存在差异。口腔龈下微生物群通过酸性代谢产物和细胞外电子转移导致316L SS加速腐蚀。我们的研究结果为口腔微生物腐蚀的潜在机制提供了新的见解,并指导口腔抗微生物腐蚀材料的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d164/10810744/7ee4c890337b/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验