Zheng Ying, Yang Yi, Liu Xianbo, Liu Pan, Li Xiangyu, Zhang Mingxing, Zhou Enze, Zhao Zhenjin, Wang Xue, Zhang Yuanyuan, Zheng Bowen, Yan Yuwen, Liu Yi, Xu Dake, Cao Liu
School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China.
Bioact Mater. 2024 Jan 20;35:56-66. doi: 10.1016/j.bioactmat.2024.01.007. eCollection 2024 May.
316L stainless steel (SS) is widely applied as microimplant anchorage (MIA) due to its excellent mechanical properties. However, the risk that the oral microorganisms can corrode 316L SS is fully neglected. Microbiologically influenced corrosion (MIC) of 316L SS is essential to the health and safety of all patients because the accelerated corrosion caused by the oral microbiota can trigger the release of Cr and Ni ions. This study investigated the corrosion behavior and mechanism of subgingival microbiota on 316L SS by 16S rRNA and metagenome sequencing, electrochemical measurements, and surface characterization techniques. Multispecies biofilms were formed by the oral subgingival microbiota in the simulated oral anaerobic environment on 316L SS surfaces, significantly accelerating the corrosion in the form of pitting. The microbiota samples collected from the subjects differed in biofilm compositions, corrosion behaviors, and mechanisms. The oral subgingival microbiota contributed to the accelerated corrosion of 316L SS via acidic metabolites and extracellular electron transfer. Our findings provide a new insight into the underlying mechanisms of oral microbial corrosion and guide the design of oral microbial corrosion-resistant materials.
316L不锈钢(SS)因其优异的力学性能而被广泛用作微种植体支抗(MIA)。然而,口腔微生物会腐蚀316L SS这一风险却被完全忽视了。316L SS的微生物影响腐蚀(MIC)对所有患者的健康和安全至关重要,因为口腔微生物群引起的加速腐蚀会引发铬和镍离子的释放。本研究通过16S rRNA和宏基因组测序、电化学测量以及表面表征技术,研究了龈下微生物群对316L SS的腐蚀行为和机制。在模拟口腔厌氧环境中,口腔龈下微生物群在316L SS表面形成了多物种生物膜,以点蚀的形式显著加速了腐蚀。从受试者收集的微生物群样本在生物膜组成、腐蚀行为和机制方面存在差异。口腔龈下微生物群通过酸性代谢产物和细胞外电子转移导致316L SS加速腐蚀。我们的研究结果为口腔微生物腐蚀的潜在机制提供了新的见解,并指导口腔抗微生物腐蚀材料的设计。