Suppr超能文献

从系统生物学的定量动态建模中吸取的教训。

Lessons learned from quantitative dynamical modeling in systems biology.

机构信息

Institute of Physics, University of Freiburg, Freiburg, Germany ; Institute of Computational Biology, Helmholtz Center, Munich, Germany.

出版信息

PLoS One. 2013 Sep 30;8(9):e74335. doi: 10.1371/journal.pone.0074335. eCollection 2013.

Abstract

Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.

摘要

由于生物数据的高度复杂性,仅依靠对测量结果的直观解释很难理清细胞过程。一种将定量实验数据与动态数学模型相结合的系统生物学方法有望深入了解这些过程。然而,随着复杂性的增加和定量实验数据的增加,构建现实可靠的数学模型可能会成为一项具有挑战性的任务:实验数据的质量必须客观评估,未知模型参数需要从实验数据中估计,数值计算必须精确高效。在这里,我们使用两个先前建立的例子讨论、比较和描述定量动态建模过程中计算方法的性能,这些例子都有定量、剂量和时间分辨的实验数据。特别是,我们提出了一种能够以有效、客观和自动化的方式确定实验数据质量的方法。使用这种方法,即使是来自不同测量技术甚至是单个重复实验的数据,也可以可靠地用于数学建模。对于未知模型参数的估计,我们系统地比较了不同优化算法的性能。结果表明,确定性基于导数的优化方法,结合灵敏度方程和基于拉丁超立方采样的多起始策略,在准确性和速度方面比其他方法高出几个数量级。最后,我们研究了能更有效地参数化模型的变换,从而进一步提高优化性能。我们提供了一个免费的开源软件包,实现了这里比较的算法和示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d73/3787051/e28bc2c0f72b/pone.0074335.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验