Suppr超能文献

系统生物学通用微分方程的现状与开放问题

Current state and open problems in universal differential equations for systems biology.

作者信息

Philipps Maren, Schmid Nina, Hasenauer Jan

机构信息

Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.

Bonn Center for Mathematical Life Sciences, University of Bonn, Bonn, Germany.

出版信息

NPJ Syst Biol Appl. 2025 Aug 30;11(1):101. doi: 10.1038/s41540-025-00550-w.

Abstract

Universal Differential Equations (UDEs) combine mechanistic differential equations with data-driven artificial neural networks, forming a flexible framework for modelling complex biological systems. This hybrid approach leverages prior knowledge and data to uncover unknown processes and deliver accurate predictions. However, UDEs face challenges in efficient and reliable training due to stiff dynamics and noisy, sparse data common in biology, and in ensuring the interpretability of the parameters of the mechanistic model. We investigate these challenges and evaluate UDE performance on realistic biological scenarios, providing a systematic training pipeline. Our results demonstrate the versatility of UDEs in systems biology and reveal that noise and limited data significantly degrade performance, but regularisation can improve accuracy and interpretability. By addressing key challenges and offering practical solutions, this work advances UDE methodology and underscores its potential in tackling complex problems in systems biology.

摘要

通用微分方程(UDEs)将机械微分方程与数据驱动的人工神经网络相结合,形成了一个用于对复杂生物系统进行建模的灵活框架。这种混合方法利用先验知识和数据来揭示未知过程并做出准确预测。然而,由于生物学中常见的刚性动力学以及噪声大、数据稀疏的情况,UDEs在高效可靠的训练方面面临挑战,并且在确保机械模型参数的可解释性方面也存在困难。我们研究了这些挑战,并在实际生物场景中评估了UDEs的性能,提供了一个系统的训练流程。我们的结果证明了UDEs在系统生物学中的通用性,并表明噪声和有限的数据会显著降低性能,但正则化可以提高准确性和可解释性。通过解决关键挑战并提供实际解决方案,这项工作推动了UDE方法的发展,并强调了其在解决系统生物学复杂问题方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c1/12398592/f6a66b42a8c3/41540_2025_550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验