Suppr超能文献

系统生物学中用于预测不确定性量化的谱展开方法。

Spectral expansion methods for prediction uncertainty quantification in systems biology.

作者信息

Deneer Anna, Molenaar Jaap, Fleck Christian

机构信息

Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Netherlands.

Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany.

出版信息

Front Syst Biol. 2024 Oct 3;4:1419809. doi: 10.3389/fsysb.2024.1419809. eCollection 2024.

Abstract

Uncertainty is ubiquitous in biological systems. For example, since gene expression is intrinsically governed by noise, nature shows a fascinating degree of variability. If we want to use a model to predict the behaviour of such an intrinsically stochastic system, we have to cope with the fact that the model parameters are never exactly known, but vary according to some distribution. A key question is then to determine how the uncertainties in the parameters affect the model outcome. Knowing the latter uncertainties is crucial when a model is used for, e.g., experimental design, optimisation, or decision-making. To establish how parameter and model prediction uncertainties are related, Monte Carlo approaches could be used. Then, the model is evaluated for a huge number of parameters sets, drawn from the multivariate parameter distribution. However, when model solutions are computationally expensive this approach is intractable. To overcome this problem, so-called spectral expansion (SE) methods have been developed to quantify prediction uncertainty within a probabilistic framework. Such SE methods have a basis in, e.g., computational mathematics, engineering, physics, and fluid dynamics, and, to a lesser extent, systems biology. The computational costs of SE schemes mainly stem from the calculation of the expansion coefficients. Furthermore, SE effectively leads to a surrogate model which captures the dependence of the model on the uncertainty parameters, but is much simpler to execute compared to the original model. In this paper, we present an innovative scheme for the calculation of the expansion coefficients. It guarantees that the model has to be evaluated only a restricted number of times. Especially for models of high complexity this may be a huge computational advantage. By applying the scheme to a variety of examples we show its power, especially in challenging situations where solutions slowly converge due to high computational costs, bifurcations, and discontinuities.

摘要

不确定性在生物系统中无处不在。例如,由于基因表达本质上受噪声支配,自然界呈现出惊人的变异性。如果我们想用一个模型来预测这样一个内在随机系统的行为,我们必须面对模型参数永远无法精确知晓而是根据某种分布变化这一事实。那么一个关键问题就是确定参数中的不确定性如何影响模型结果。当模型用于例如实验设计、优化或决策时,了解后者的不确定性至关重要。为了确定参数不确定性与模型预测不确定性之间的关系,可以使用蒙特卡罗方法。然后,针对从多元参数分布中抽取的大量参数集对模型进行评估。然而,当模型求解计算成本很高时,这种方法就难以处理。为了克服这个问题,已经开发出所谓的谱展开(SE)方法来在概率框架内量化预测不确定性。此类SE方法基于例如计算数学、工程学、物理学和流体动力学,在较小程度上也基于系统生物学。SE方案的计算成本主要源于展开系数的计算。此外,SE有效地产生了一个替代模型,该模型捕捉了模型对不确定性参数的依赖性,但与原始模型相比执行起来要简单得多。在本文中,我们提出了一种计算展开系数的创新方案。它保证只需对模型进行有限次数的评估。特别是对于高复杂度模型,这可能具有巨大的计算优势。通过将该方案应用于各种示例,我们展示了它的强大之处,尤其是在由于计算成本高、分岔和不连续性导致解收敛缓慢的具有挑战性的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bf5/12341980/4c822055acd6/fsysb-04-1419809-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验