Suppr超能文献

聚酮合酶 O-甲基化的结构基础。

Structural Basis of Polyketide Synthase O-Methylation.

机构信息

Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States.

Department of Biological Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.

出版信息

ACS Chem Biol. 2018 Dec 21;13(12):3221-3228. doi: 10.1021/acschembio.8b00687. Epub 2018 Dec 3.

Abstract

Modular type I polyketide synthases (PKSs) produce some of the most chemically complex metabolites in nature through a series of multienzyme modules. Each module contains a variety of catalytic domains to selectively tailor the growing molecule. PKS O-methyltransferases ( O-MTs) are predicted to methylate β-hydroxyl or β-keto groups, but their activity and structure have not been reported. We determined the domain boundaries and characterized the catalytic activity and structure of the StiD and StiE O-MTs, which methylate opposite β-hydroxyl stereocenters in the myxobacterial stigmatellin biosynthetic pathway. Substrate stereospecificity was demonstrated for the StiD O-MT. Key catalytic residues were identified in the crystal structures and investigated in StiE O-MT via site-directed mutagenesis and further validated with the cyanobacterial CurL O-MT from the curacin biosynthetic pathway. Initial structural and biochemical analysis of PKS O-MTs supplies a new chemoenzymatic tool, with the unique ability to selectively modify hydroxyl groups during polyketide biosynthesis.

摘要

模块 I 型聚酮合酶 (PKSs) 通过一系列多酶模块产生自然界中一些化学结构最为复杂的代谢物。每个模块都包含多种催化结构域,以有选择地修饰不断增长的分子。PKS O-甲基转移酶(O-MTs)被预测能够甲基化β-羟基或β-酮基,但它们的活性和结构尚未被报道。我们确定了 StiD 和 StiE O-MTs 的结构域边界,并对其催化活性和结构进行了表征,它们甲基化粘细菌棘菌素生物合成途径中相反的β-羟基立体中心。StiD O-MT 的底物立体特异性得到了证明。在晶体结构中鉴定了关键的催化残基,并通过定点突变对 StiE O-MT 进行了研究,进一步用来自_curacin 生物合成途径的蓝细菌 CurL O-MT 进行了验证。对 PKS O-MTs 的初步结构和生化分析提供了一种新的化学生物学工具,具有在聚酮生物合成过程中选择性修饰羟基的独特能力。

相似文献

1
Structural Basis of Polyketide Synthase O-Methylation.
ACS Chem Biol. 2018 Dec 21;13(12):3221-3228. doi: 10.1021/acschembio.8b00687. Epub 2018 Dec 3.
2
Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase.
ACS Chem Biol. 2016 Dec 16;11(12):3319-3327. doi: 10.1021/acschembio.6b00759. Epub 2016 Oct 18.
3
Structural and Functional Studies of a gem-Dimethylating Methyltransferase from a trans-Acyltransferase Assembly Line.
ACS Chem Biol. 2018 Dec 21;13(12):3306-3314. doi: 10.1021/acschembio.8b00733. Epub 2018 Nov 9.
4
In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites.
BMC Bioinformatics. 2008 Oct 25;9:454. doi: 10.1186/1471-2105-9-454.
5
Site-Directed Mutagenesis of Modular Polyketide Synthase Ketoreductase Domains for Altered Stereochemical Control.
Chembiochem. 2021 Apr 6;22(7):1122-1150. doi: 10.1002/cbic.202000613. Epub 2020 Dec 22.
9
Commodity Chemicals From Engineered Modular Type I Polyketide Synthases.
Methods Enzymol. 2018;608:393-415. doi: 10.1016/bs.mie.2018.04.027. Epub 2018 May 26.

引用本文的文献

2
Engineering regiospecific methylation of the pladienolides.
RSC Chem Biol. 2025 May 8. doi: 10.1039/d5cb00068h.
4
Diene incorporation by a dehydratase domain variant in modular polyketide synthases.
Nat Chem Biol. 2022 Dec;18(12):1410-1416. doi: 10.1038/s41589-022-01127-y. Epub 2022 Sep 15.
5
Three New Stigmatellin Derivatives Reveal Biosynthetic Insights of Its Side Chain Decoration.
Molecules. 2022 Jul 21;27(14):4656. doi: 10.3390/molecules27144656.
6
General chemoenzymatic route to two-stereocenter triketides employing assembly line ketoreductases.
Chem Commun (Camb). 2019 Dec 17;56(1):157-160. doi: 10.1039/c9cc07966a.

本文引用的文献

1
Engineering strategies for rational polyketide synthase design.
Nat Prod Rep. 2018 Oct 17;35(10):1070-1081. doi: 10.1039/c8np00030a.
2
Stereospecificity of Enoylreductase Domains from Modular Polyketide Synthases.
ACS Chem Biol. 2018 Apr 20;13(4):871-875. doi: 10.1021/acschembio.7b00982. Epub 2018 Feb 15.
4
Elucidation of the Stereospecificity of C-Methyltransferases from trans-AT Polyketide Synthases.
J Am Chem Soc. 2017 May 3;139(17):6102-6105. doi: 10.1021/jacs.7b02911. Epub 2017 Apr 25.
5
Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin.
Cell Chem Biol. 2017 Mar 16;24(3):316-325. doi: 10.1016/j.chembiol.2017.01.008. Epub 2017 Feb 23.
6
Vinylogous Dehydration by a Polyketide Dehydratase Domain in Curacin Biosynthesis.
J Am Chem Soc. 2016 Dec 14;138(49):16024-16036. doi: 10.1021/jacs.6b09748. Epub 2016 Nov 30.
7
Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase.
ACS Chem Biol. 2016 Dec 16;11(12):3319-3327. doi: 10.1021/acschembio.6b00759. Epub 2016 Oct 18.
8
Isolation, Structure Elucidation, and (Bio)Synthesis of Haprolid, a Cell-Type-Specific Myxobacterial Cytotoxin.
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):10113-7. doi: 10.1002/anie.201603288. Epub 2016 Jul 12.
9
Stereocontrol within polyketide assembly lines.
Nat Prod Rep. 2016 Feb;33(2):141-9. doi: 10.1039/c5np00092k.
10
Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties.
Angew Chem Int Ed Engl. 2015 Aug 24;54(35):10149-54. doi: 10.1002/anie.201505069. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验