Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States.
Department of Biological Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.
ACS Chem Biol. 2018 Dec 21;13(12):3221-3228. doi: 10.1021/acschembio.8b00687. Epub 2018 Dec 3.
Modular type I polyketide synthases (PKSs) produce some of the most chemically complex metabolites in nature through a series of multienzyme modules. Each module contains a variety of catalytic domains to selectively tailor the growing molecule. PKS O-methyltransferases ( O-MTs) are predicted to methylate β-hydroxyl or β-keto groups, but their activity and structure have not been reported. We determined the domain boundaries and characterized the catalytic activity and structure of the StiD and StiE O-MTs, which methylate opposite β-hydroxyl stereocenters in the myxobacterial stigmatellin biosynthetic pathway. Substrate stereospecificity was demonstrated for the StiD O-MT. Key catalytic residues were identified in the crystal structures and investigated in StiE O-MT via site-directed mutagenesis and further validated with the cyanobacterial CurL O-MT from the curacin biosynthetic pathway. Initial structural and biochemical analysis of PKS O-MTs supplies a new chemoenzymatic tool, with the unique ability to selectively modify hydroxyl groups during polyketide biosynthesis.
模块 I 型聚酮合酶 (PKSs) 通过一系列多酶模块产生自然界中一些化学结构最为复杂的代谢物。每个模块都包含多种催化结构域,以有选择地修饰不断增长的分子。PKS O-甲基转移酶(O-MTs)被预测能够甲基化β-羟基或β-酮基,但它们的活性和结构尚未被报道。我们确定了 StiD 和 StiE O-MTs 的结构域边界,并对其催化活性和结构进行了表征,它们甲基化粘细菌棘菌素生物合成途径中相反的β-羟基立体中心。StiD O-MT 的底物立体特异性得到了证明。在晶体结构中鉴定了关键的催化残基,并通过定点突变对 StiE O-MT 进行了研究,进一步用来自_curacin 生物合成途径的蓝细菌 CurL O-MT 进行了验证。对 PKS O-MTs 的初步结构和生化分析提供了一种新的化学生物学工具,具有在聚酮生物合成过程中选择性修饰羟基的独特能力。