Suppr超能文献

基于图割的局部二值拟合能量解用于磁共振成像分割

Local binary fitting energy solution by graph cuts for MRI segmentation.

作者信息

Cardenas-Peña D, Martinez-Vargas J D, Castellanos-Dominguez G

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5131-4. doi: 10.1109/EMBC.2013.6610703.

Abstract

This paper proposes a new solution for local binary fitting energy minimization based on graph cuts for automatic brain structure segmentation on magnetic resonance images. The approach establishes an effective way to embed the energy formulation into a directed graph, such that the energy is minimized by maximizing the graph flow. Proposed and conventional solutions are compared by segmenting the well-known BrainWeb synthetic brain Magnetic Resonance Imaging database. Achieved results show an improvement on the computational cost (about 10 times shorter) while maintaining the segmentation accuracy (96%).

摘要

本文提出了一种基于图割的局部二值拟合能量最小化新解决方案,用于磁共振图像的自动脑结构分割。该方法建立了一种有效的方式将能量公式嵌入到有向图中,使得通过最大化图流来最小化能量。通过分割著名的BrainWeb合成脑磁共振成像数据库,对所提出的解决方案和传统解决方案进行了比较。取得的结果表明,在保持分割精度(96%)的同时,计算成本有所改善(缩短了约10倍)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验