单线态氧传感器绿的光化学。

Photochemistry of singlet oxygen sensor green.

机构信息

The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

出版信息

J Phys Chem B. 2013 Nov 14;117(45):13985-92. doi: 10.1021/jp406638g. Epub 2013 Oct 31.

Abstract

To detect singlet oxygen ((1)O2), the commercially available fluorescent sensor named Singlet Oxygen Sensor Green (SOSG) has been the most widely used from material studies to medical applications, for example, photodynamic therapy. In light of the previous studies, SOSG is a dyad composed of fluorescein and anthracene moieties. In the present study, we carried out quantitative studies on photochemical dynamics of SOSG for the first time, such as the occurrence of intramolecular photoinduced electron transfer (PET), (1)O2 generation, and two-photon ionization. It was revealed that these relaxation pathways strongly depend on the irradiation conditions. The visible-light excitation (ex. 532 nm) of SOSG induced intramolecular PET as a major deactivation process (kPET = 9.7 × 10(11) s(-1)), resulting in fluorescence quenching. In addition, intersystem crossing occurred as a minor deactivation process that gave rise to (1)O2 generation via the bimolecular triplet-triplet energy transfer (kq = 1.2 × 10(9) M(-1) s(-1)). Meanwhile, ultraviolet-light excitation (355 nm) of SOSG caused the two-photon ionization to give a SOSG cation (Φion = 0.003 at 24 mJ cm(-2)), leading to SOSG decomposition to the final products. Our results clearly demonstrate the problems of SOSG, such as photodecomposition and (1)O2 generation. In fact, these are not special for SOSG but common drawbacks for most of the fluorescein-based sensors.

摘要

为了检测单线态氧((1)O2),一种名为单线态氧传感器绿(SOSG)的商用荧光传感器已被广泛应用于从材料研究到医学应用,例如光动力疗法。根据先前的研究,SOSG 是一种由荧光素和蒽基团组成的二聚体。在本研究中,我们首次对 SOSG 的光化学动力学进行了定量研究,例如分子内光诱导电子转移(PET)、(1)O2 的生成和双光子电离。结果表明,这些弛豫途径强烈依赖于辐照条件。SOSG 的可见光激发(ex. 532nm)诱导分子内 PET 作为主要的失活过程(kPET = 9.7×10(11) s(-1)),导致荧光猝灭。此外,系间穿越发生作为次要的失活过程,通过双分子三重态-三重态能量转移产生(1)O2 生成(kq = 1.2×10(9) M(-1) s(-1))。同时,SOSG 的紫外光激发(355nm)导致双光子电离产生 SOSG 阳离子(Φion = 0.003 在 24mJ cm(-2)),导致 SOSG 分解为最终产物。我们的结果清楚地表明了 SOSG 的问题,例如光分解和(1)O2 的生成。事实上,这些问题并不是 SOSG 所特有的,而是大多数基于荧光素的传感器的共同缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索