School of Chemistry, University of New South Wales, Sydney 2052, Australia.
Chem Commun (Camb). 2013 Dec 4;49(93):10893-907. doi: 10.1039/c3cc46864j.
Nitrogenase naturally converts N2 to NH3, but it also hydrogenates a variety of small molecules, in many cases requiring multiple electrons plus protons for each catalytic cycle. A general mechanism, arising from many density functional calculations and simulations, is proposed to account for all of these reactions. Protons, supplied serially in conjunction with electrons to the active site FeMo-co (a CFe7MoS9 (homocitrate) cluster), generate H atoms that migrate over and populate two S and two Fe atoms in the reaction domain. The mechanistic paradigm is conceptually straightforward: substrate (on Fe) and H atoms (on S and Fe) are bound contiguously in the reaction zone, and H atoms transfer (probably with some quantum tunneling) to the substrate to form product. Details and justifications of the mechanisms for N2 and other key substrates are summarised, and the unusual structure of FeMo-co as a general hydrogenation catalyst is rationalised. Testing experiments are suggested.
固氮酶能将氮气自然转化为氨,但它也能催化多种小分子加氢,在许多情况下,每个催化循环都需要多个电子和质子。目前提出了一种普遍的机制,该机制源自大量密度泛函计算和模拟,可解释所有这些反应。质子与电子一起连续供应到活性位点 FeMo-co(一个 CFe7MoS9(同型柠檬酸)簇),生成 H 原子,这些 H 原子迁移并在反应区域中填充两个 S 和两个 Fe 原子。这种机理的概念非常简单:底物(在 Fe 上)和 H 原子(在 S 和 Fe 上)在反应区中连续结合,H 原子转移(可能伴随着一些量子隧穿)到底物上以形成产物。本文总结了 N2 和其他关键底物的反应机制的细节和理由,并合理地解释了 FeMo-co 作为通用加氢催化剂的不寻常结构。还提出了一些测试实验。