Suppr超能文献

大的氢同位素分馏区分固氮酶衍生的甲烷与其他甲烷来源。

Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources.

机构信息

Department of Geosciences, Princeton University, Princeton, New Jersey, USA

Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA.

出版信息

Appl Environ Microbiol. 2020 Sep 17;86(19). doi: 10.1128/AEM.00849-20.

Abstract

Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO) into the potent greenhouse gas methane (CH). Here, we report carbon (C/C) and hydrogen (H/H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (α = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (α = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large α shows that the reaction pathway nitrogenases use to form methane strongly discriminates against H, and that α distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles. All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.

摘要

生物固氮由氮酶催化。最近发现这种金属酶有两种形式,即仅含有钒(V)和铁(Fe)的氮酶,它们能够将少量的二氧化碳(CO)还原成强效温室气体甲烷(CH)。在这里,我们报告了代谢多功能固氮体 中仅含有 V 和 Fe 的氮酶产生的甲烷的碳(C/C)和氢(H/H)稳定同位素组成和分馏。两种形式的替代氮酶赋予的稳定碳同位素分馏都在产甲烷菌的范围内(V-氮酶为 1.051 ± 0.002,仅含 Fe 的氮酶为 1.055 ± 0.001;值为平均值 ± 标准误差)。相比之下,氢同位素分馏(V-氮酶为 2.071 ± 0.014,仅含 Fe 的氮酶为 2.078 ± 0.018)是所有已知生物或地质成因途径中最大的。大的α值表明,氮酶形成甲烷的反应途径强烈排斥 H,并且α值将氮酶衍生的甲烷与所有其他已知的生物和非生物来源区分开来。这些关于氮酶衍生甲烷的发现将有助于限制微生物群落中的碳和氮流以及替代氮酶在全球生物地球化学循环中的作用。所有生命形式的生长都需要氮。许多生活在不同环境中的不同种类的微生物利用一种特殊的酶——氮酶,将大气中的惰性氮气转化为可用形式。氮酶的底物范围很广,除了产生可用的氮之外,一些形式的氮酶还会产生少量的温室气体甲烷。这与其他产生甲烷以获取能量的微生物不同。到目前为止,还没有很好的方法来确定自然界中具有氮酶的微生物何时产生甲烷。在这里,我们提出了一种同位素指纹,使科学家能够区分微生物产生甲烷是为了获取能量,还是作为获取氮的副产品。有了这个新的指纹,就有可能提高我们对自然界中甲烷产生与氮获取之间关系的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e675/7499036/249e5f10e420/AEM.00849-20-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验