Suppr超能文献

利用磁性纳米粒子产生热量的物理学在热疗中的应用。

Physics of heat generation using magnetic nanoparticles for hyperthermia.

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg , Maryland and.

出版信息

Int J Hyperthermia. 2013 Dec;29(8):715-29. doi: 10.3109/02656736.2013.836758. Epub 2013 Oct 16.

Abstract

Magnetic nanoparticle hyperthermia and thermal ablation have been actively studied experimentally and theoretically. In this review, we provide a summary of the literature describing the properties of nanometer-scale magnetic materials suspended in biocompatible fluids and their interactions with external magnetic fields. Summarised are the properties and mechanisms understood to be responsible for magnetic heating, and the models developed to understand the behaviour of single-domain magnets exposed to alternating magnetic fields. Linear response theory and its assumptions have provided a useful beginning point; however, its limitations are apparent when nanoparticle heating is measured over a wide range of magnetic fields. Well-developed models (e.g. for magnetisation reversal mechanisms and pseudo-single domain formation) available from other fields of research are explored. Some of the methods described include effects of moment relaxation, anisotropy, nanoparticle and moment rotation mechanisms, interactions and collective behaviour, which have been experimentally identified to be important. Here, we will discuss the implicit assumptions underlying these analytical models and their relevance to experiments. Numerical simulations will be discussed as an alternative to these simple analytical models, including their applicability to experimental data. Finally, guidelines for the design of optimal magnetic nanoparticles will be presented.

摘要

磁性纳米粒子热疗和热消融在实验和理论上都得到了积极的研究。在这篇综述中,我们总结了描述悬浮在生物相容性液体中的纳米级磁性材料的性质及其与外磁场相互作用的文献。总结了磁性加热的性质和机制,以及开发的模型,以了解暴露于交变磁场中的单畴磁铁的行为。线性响应理论及其假设提供了一个有用的起点;然而,当在广泛的磁场范围内测量纳米粒子加热时,其局限性是显而易见的。探索了来自其他研究领域的、已经发展成熟的模型(例如磁化反转机制和准单畴形成)。描述的一些方法包括磁矩弛豫、各向异性、纳米粒子和磁矩旋转机制、相互作用和集体行为的影响,这些影响已经被实验确定为重要的影响。在这里,我们将讨论这些分析模型背后的隐含假设及其与实验的相关性。将讨论数值模拟作为这些简单分析模型的替代方法,包括它们对实验数据的适用性。最后,将提出设计最佳磁性纳米粒子的指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验