文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Ranking Magnetic Colloid Performance for Magnetic Particle Imaging and Magnetic Particle Hyperthermia.

作者信息

Carlton Hayden, Salimi Marzieh, Arepally Nageshwar, Bentolila Gabriela, Sharma Anirudh, Bibic Adnan, Newgren Matt, Goodwill Patrick, Attaluri Anilchandra, Korangath Preethi, Bulte Jeff W M, Ivkov Robert

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences the Johns Hopkins University School of Medicine Baltimore MD 21231 USA.

Russell H. Morgan Department of Radiology and Radiological Science Division of MR Research the Johns Hopkins University School of Medicine Baltimore MD 21205 USA.

出版信息

Adv Funct Mater. 2025 Jan 9;35(2):2412321. doi: 10.1002/adfm.202412321. Epub 2024 Oct 18.


DOI:10.1002/adfm.202412321
PMID:39882193
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11774450/
Abstract

Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation. Current models predict that functional requirements of each modality impose conflicting demands on nanoparticle magnetic properties. This objective here is to develop a measurement and ranking scheme based on end-use performance to streamline evaluation of candidate MNP formulations. The measured MPI point-spread function (PSF) and specific loss power (SLP) is combined to generate a single numerical value for comparison on a relative ranking scale, or figure of merit (FoM). 12 aqueous iron-containing formulations are evaluated, including FDA-approved (parenteral) iron-containing colloids. MNPs with high (Synomag-D70: 123.4), medium (Synomag-D50: 63.2), and low (NanoXact: 0.147) FoM values are selected for in vivo validation of the selection scheme in subcutaneous 4T1 tumors. Results demonstrate that the proposed ranking accurately assessed the relative performance of MNPs for MPI and MPH. Data demonstrated that image quality and tumor temperature rise increased with FoM ranking, validating predictions. It isshown that the MPI signal correlated with MNP concentration in tissue. Computational heat transfer models anchored on tumor MPI data harmonized with experimental results to within an average of 2 °C when MNP content estimated from MPI data is included. Computational studies emphasized the importance of post-injection MNP quantitation and MPI spatial resolution.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/fe05eddcb40c/ADFM-35-2412321-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/82bc6e34403e/ADFM-35-2412321-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/1c0f960b0110/ADFM-35-2412321-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/0a3a5464e8a1/ADFM-35-2412321-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/7b9f5caed19a/ADFM-35-2412321-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/b913f7caded8/ADFM-35-2412321-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/fe05eddcb40c/ADFM-35-2412321-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/82bc6e34403e/ADFM-35-2412321-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/1c0f960b0110/ADFM-35-2412321-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/0a3a5464e8a1/ADFM-35-2412321-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/7b9f5caed19a/ADFM-35-2412321-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/b913f7caded8/ADFM-35-2412321-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/033b/11774450/fe05eddcb40c/ADFM-35-2412321-g006.jpg

相似文献

[1]
Ranking Magnetic Colloid Performance for Magnetic Particle Imaging and Magnetic Particle Hyperthermia.

Adv Funct Mater. 2025-1-9

[2]
Magnetic particle imaging resolution needed for magnetic hyperthermia treatment planning: a sensitivity analysis.

Front Therm Eng. 2025

[3]
Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia.

Nanomaterials (Basel). 2024-6-20

[4]
MPI performance of magnetic nanoparticles depends on matrix composition and temperature: implications for MPI signal amplitude, spatial resolution, and tracer quantification.

Nanoscale Adv. 2025-1-15

[5]
Nickel Ferrite Nanoparticles for In Vivo Multimodal Magnetic Resonance and Magnetic Particle Imaging.

ACS Appl Nano Mater. 2025-7-16

[6]
Effects of excitation field amplitude on magnetic particle imaging performance: a modeling study.

J Phys D Appl Phys. 2025-7-28

[7]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[8]
Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging.

Comput Biol Med. 2024-8

[9]
Short-Term Memory Impairment

2025-1

[10]
Microfluidic formulation and characterization of size-tunable microparticle magnetic particle imaging tracers.

J Magn Magn Mater. 2025-6-15

引用本文的文献

[1]
Spillover can limit accurate signal quantification in MPI.

Npj Imaging. 2025-5-6

[2]
Magnetic particle imaging resolution needed for magnetic hyperthermia treatment planning: a sensitivity analysis.

Front Therm Eng. 2025

[3]
Magnetic hyperthermia therapy enhances the chemoradiosensitivity of glioblastoma.

Sci Rep. 2025-3-27

[4]
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.

ACS Appl Mater Interfaces. 2025-4-9

[5]
MPI performance of magnetic nanoparticles depends on matrix composition and temperature: implications for MPI signal amplitude, spatial resolution, and tracer quantification.

Nanoscale Adv. 2025-1-15

本文引用的文献

[1]
theranostic platform combining highly localized magnetic fluid hyperthermia, magnetic particle imaging, and thermometry in 3D.

Theranostics. 2024

[2]
HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia.

Int J Hyperthermia. 2023

[3]
MONITORING PERFUSION-BASED CONVECTION IN CANCER TUMOR TISSUE UNDERGOING NANOPARTICLE HEATING BY ANALYZING TEMPERATURE RESPONSES TO TRANSIENT PULSED HEATING.

Proc ASME Summer Heat Transf Conf. 2023-7

[4]
Development of a Treatment Planning Framework for Laser Interstitial Thermal Therapy (LITT).

Cancers (Basel). 2023-9-14

[5]
A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis.

J Appl Phys. 2023-1-28

[6]
Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine.

Nanoscale Adv. 2021-2-8

[7]
Particle interactions and their effect on magnetic particle spectroscopy and imaging.

Nanoscale. 2022-5-19

[8]
Clinical magnetic hyperthermia requires integrated magnetic particle imaging.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-5

[9]
Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer.

Cancers (Basel). 2021-10-21

[10]
Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索