Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC -- Universidad de Zaragoza , Zaragoza , Spain.
Int J Hyperthermia. 2013 Dec;29(8):739-51. doi: 10.3109/02656736.2013.826825. Epub 2013 Sep 3.
In magnetic hyperthermia, characterising the specific functionality of magnetic nanoparticle arrangements is essential to plan the therapies by simulating maximum achievable temperatures. This functionality, i.e. the heat power released upon application of an alternating magnetic field, is quantified by means of the specific absorption rate (SAR), also referred to as specific loss power (SLP). Many research groups are currently involved in the SAR/SLP determination of newly synthesised materials by several methods, either magnetic or calorimetric, some of which are affected by important and unquantifiable uncertainties that may turn measurements into rough estimates. This paper reviews all these methods, discussing in particular sources of uncertainties, as well as their possible minimisation. In general, magnetic methods, although accurate, do not operate in the conditions of magnetic hyperthermia. Calorimetric methods do, but the easiest to implement, the initial-slope method in isoperibol conditions, derives inaccuracies coming from the lack of matching between thermal models, experimental set-ups and measuring conditions, while the most accurate, the pulse-heating method in adiabatic conditions, requires more complex set-ups.
在磁热疗中,通过模拟可达到的最高温度来规划治疗,对磁性纳米粒子排列的特定功能进行描述至关重要。这种功能,即施加交变磁场时释放的热量功率,通过比吸收率(SAR)来量化,也称为比损耗功率(SLP)。目前,许多研究小组都在通过多种方法,包括磁方法和量热方法,来确定新合成材料的 SAR/SLP 值,其中一些方法受到重要且不可量化的不确定性的影响,这些不确定性可能使测量结果成为粗略估计。本文综述了所有这些方法,特别讨论了不确定性的来源及其可能的最小化。一般来说,尽管磁方法准确,但它们不适用于磁热疗的条件。量热法可以,但最容易实施的等温条件下的初始斜率法,由于热模型、实验装置和测量条件之间不匹配而产生误差,而最准确的绝热条件下的脉冲加热法,则需要更复杂的装置。