Suppr超能文献

一种用于在线检测碎裂 QRS 并识别其各种形态的自动化算法。

An automated algorithm for online detection of fragmented QRS and identification of its various morphologies.

机构信息

Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, , Guwahati, India.

出版信息

J R Soc Interface. 2013 Oct 16;10(89):20130761. doi: 10.1098/rsif.2013.0761. Print 2013 Dec 6.

Abstract

Fragmented QRS (f-QRS) has been proven to be an efficient biomarker for several diseases, including remote and acute myocardial infarction, cardiac sarcoidosis, non-ischaemic cardiomyopathy, etc. It has also been shown to have higher sensitivity and/or specificity values than the conventional markers (e.g. Q-wave, ST-elevation, etc.) which may even regress or disappear with time. Patients with such diseases have to undergo expensive and sometimes invasive tests for diagnosis. Automated detection of f-QRS followed by identification of its various morphologies in addition to the conventional ECG feature (e.g. P, QRS, T amplitude and duration, etc.) extraction will lead to a more reliable diagnosis, therapy and disease prognosis than the state-of-the-art approaches and thereby will be of significant clinical importance for both hospital-based and emerging remote health monitoring environments as well as for implanted ICD devices. An automated algorithm for detection of f-QRS from the ECG and identification of its various morphologies is proposed in this work which, to the best of our knowledge, is the first work of its kind. Using our recently proposed time-domain morphology and gradient-based ECG feature extraction algorithm, the QRS complex is extracted and discrete wavelet transform (DWT) with one level of decomposition, using the 'Haar' wavelet, is applied on it to detect the presence of fragmentation. Detailed DWT coefficients were observed to hypothesize the postulates of detection of all types of morphologies as reported in the literature. To model and verify the algorithm, PhysioNet's PTB database was used. Forty patients were randomly selected from the database and their ECG were examined by two experienced cardiologists and the results were compared with those obtained from the algorithm. Out of 40 patients, 31 were considered appropriate for comparison by two cardiologists, and it is shown that 334 out of 372 (89.8%) leads from the chosen 31 patients complied favourably with our proposed algorithm. The sensitivity and specificity values obtained for the detection of f-QRS were 0.897 and 0.899, respectively. Automation will speed up the detection of fragmentation, reducing the human error involved and will allow it to be implemented for hospital-based remote monitoring and ICD devices.

摘要

碎裂 QRS 波(f-QRS)已被证明是多种疾病的有效生物标志物,包括远程和急性心肌梗死、心脏结节病、非缺血性心肌病等。与传统标志物(如 Q 波、ST 段抬高等)相比,它的灵敏度和/或特异性更高,而且这些传统标志物可能会随着时间的推移而消退或消失。患有此类疾病的患者必须接受昂贵且有时需要侵入性的检查来进行诊断。自动检测 f-QRS 并识别其各种形态,以及提取常规心电图特征(如 P、QRS、T 波幅度和持续时间等),将比现有方法更可靠地进行诊断、治疗和疾病预后,因此,无论是在基于医院的远程健康监测环境还是在植入式 ICD 设备中,都具有重要的临床意义。本工作提出了一种从心电图中自动检测 f-QRS 并识别其各种形态的算法,据我们所知,这是此类工作中的首例。使用我们最近提出的基于时域形态和基于梯度的心电图特征提取算法,提取 QRS 复合体,并对其应用一级分解的离散小波变换(DWT),使用“Haar”小波,以检测碎片的存在。观察详细的 DWT 系数来假设检测文献中报道的所有类型形态的假设。为了对算法进行建模和验证,使用了 PhysioNet 的 PTB 数据库。从数据库中随机选择了 40 名患者,由两名有经验的心脏病专家检查他们的心电图,并将结果与算法获得的结果进行比较。在 40 名患者中,有 31 名患者被两名心脏病专家认为适合比较,结果表明,从所选的 31 名患者中,有 334 名患者(89.8%)的导联与我们提出的算法相符。检测 f-QRS 的灵敏度和特异性值分别为 0.897 和 0.899。自动化将加快对碎裂的检测,减少人为错误,并允许将其应用于基于医院的远程监测和 ICD 设备。

相似文献

1
An automated algorithm for online detection of fragmented QRS and identification of its various morphologies.
J R Soc Interface. 2013 Oct 16;10(89):20130761. doi: 10.1098/rsif.2013.0761. Print 2013 Dec 6.
2
Methodology for automated detection of fragmentation in QRS complex of Standard 12-lead ECG.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3789-92. doi: 10.1109/EMBC.2013.6610369.
3
A robust wavelet-based multi-lead Electrocardiogram delineation algorithm.
Med Eng Phys. 2009 Dec;31(10):1219-27. doi: 10.1016/j.medengphy.2009.07.017. Epub 2009 Aug 18.
4
Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition.
Comput Methods Programs Biomed. 2020 Feb;184:105120. doi: 10.1016/j.cmpb.2019.105120. Epub 2019 Oct 5.
9
Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals.
Comput Methods Programs Biomed. 2018 Jul;161:133-143. doi: 10.1016/j.cmpb.2018.04.018. Epub 2018 Apr 20.
10
QRS complex detection using stationary wavelet transform and adaptive thresholding.
Biomed Phys Eng Express. 2022 Sep 23;8(6). doi: 10.1088/2057-1976/ac8e70.

引用本文的文献

1
Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders.
Biosensors (Basel). 2024 Jul 9;14(7):335. doi: 10.3390/bios14070335.
2
QRS fragmentation does not predict mortality in survivors of acute myocardial infarction.
Clin Cardiol. 2024 Jan;47(1):e24218. doi: 10.1002/clc.24218.
3
QRS fragmentation is associated with increased risk of ventricular arrhythmias in high-risk patients; Data from the SMASH 1 Study.
Ann Noninvasive Electrocardiol. 2022 Sep;27(5):e12985. doi: 10.1111/anec.12985. Epub 2022 Jul 15.
7
Fragmented QRS - Its significance.
Indian Pacing Electrophysiol J. 2020 Jan-Feb;20(1):27-32. doi: 10.1016/j.ipej.2019.12.005. Epub 2019 Dec 13.
8
Closed-Loop Neuromodulation in Physiological and Translational Research.
Cold Spring Harb Perspect Med. 2019 Nov 1;9(11):a034314. doi: 10.1101/cshperspect.a034314.
9
Mining telemonitored physiological data and patient-reported outcomes of congestive heart failure patients.
PLoS One. 2018 Mar 1;13(3):e0190323. doi: 10.1371/journal.pone.0190323. eCollection 2018.

本文引用的文献

1
A low-complexity ECG feature extraction algorithm for mobile healthcare applications.
IEEE J Biomed Health Inform. 2013 Mar;17(2):459-69. doi: 10.1109/TITB.2012.2231312. Epub 2013 Jan 25.
4
Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes.
IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):854-63. doi: 10.1109/TITB.2011.2163943. Epub 2011 Aug 8.
5
Fragmented QRS in prediction of cardiac deaths and heart failure hospitalizations after myocardial infarction.
Ann Noninvasive Electrocardiol. 2010 Apr;15(2):130-7. doi: 10.1111/j.1542-474X.2010.00353.x.
6
Fragmented QRS complex: a novel marker of cardiovascular disease.
Clin Cardiol. 2010 Feb;33(2):68-71. doi: 10.1002/clc.20709.
7
Fragmented wide QRS on a 12-lead ECG: a sign of myocardial scar and poor prognosis.
Circ Arrhythm Electrophysiol. 2008 Oct;1(4):258-68. doi: 10.1161/CIRCEP.107.763284. Epub 2008 Jul 14.
8
Fragmented QRS complexes on 12-lead ECG: a marker of cardiac sarcoidosis as detected by gadolinium cardiac magnetic resonance imaging.
Ann Noninvasive Electrocardiol. 2009 Oct;14(4):319-26. doi: 10.1111/j.1542-474X.2009.00320.x.
9
Fragmented QRS: a predictor of mortality and sudden cardiac death.
Heart Rhythm. 2009 Mar;6(3 Suppl):S8-14. doi: 10.1016/j.hrthm.2008.10.019. Epub 2008 Oct 17.
10
Fragmented QRS as a marker of conduction abnormality and a predictor of prognosis of Brugada syndrome.
Circulation. 2008 Oct 21;118(17):1697-704. doi: 10.1161/CIRCULATIONAHA.108.770917. Epub 2008 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验