1] Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA [2] Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA [3].
Nature. 2013 Oct 24;502(7472):532-6. doi: 10.1038/nature12582. Epub 2013 Oct 16.
The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics-doping or strain-in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.
频率捷变微波电路的小型化和集成——涉及电子可调滤波器、天线、谐振器和移相器——与微电子学相结合,提供了诱人的器件可能性,但需要在千兆赫兹频率下介电常数可通过施加准静态电场进行调谐的薄膜。适当的系统,如 BaxSr1-xTiO3,在环境温度以下具有顺电-铁电相变,提供了高的可调谐性。然而,这些薄膜由于缺陷而存在显著的损耗。认识到进展受到介电损耗的阻碍,我们从具有异常低损耗的系统开始——Srn+1TinO3n+1 相——其中(SrO)2 晶体学剪切面为非化学计量比提供了替代形成点缺陷的方法。在这里,我们报告了在高达 125GHz 的频率下,通过在双轴应变 Srn+1TinO3n+1 相中出现局部铁电不稳定性,实现了一个高度可调谐的基态的实验结果,其中 n≥3。与传统的修改铁电体的方法——掺杂或应变——不同,在这个独特的系统中,通过改变 n 可以增加(SrO)2 面之间的分离,从而增强局部铁电不稳定性。这个新的控制参数 n 可以被利用来实现室温下的品质因数,与所有已知的可调微波介电体相媲美。