Suppr超能文献

GFOGER修饰的基质金属蛋白酶敏感型聚乙二醇水凝胶诱导人间充质干细胞的软骨分化。

GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells.

作者信息

Mhanna Rami, Öztürk Ece, Vallmajo-Martin Queralt, Millan Christopher, Müller Michael, Zenobi-Wong Marcy

机构信息

Cartilage Engineering+Regeneration Laboratory , ETH Zürich, Zürich, Switzerland .

出版信息

Tissue Eng Part A. 2014 Apr;20(7-8):1165-74. doi: 10.1089/ten.TEA.2013.0519. Epub 2014 Feb 10.

Abstract

The cellular microenvironment plays a crucial role in directing proliferation and differentiation of stem cells. Cells interact with their microenvironment via integrins that recognize certain peptide sequences of extracellular matrix proteins. This receptor-ligand binding has profound impact on cell fate. Interactions of human bone marrow mesenchymal stem cells (hMSCs) with the triple helical collagen mimetic, GPC(GPP)5-GFOGER-(GPP)5GPC-NH2, and the fibronectin adhesion peptide, RGD, were studied in degradable or nondegradable polyethylene glycol (PEG) gels formed by Michael-type addition chemistry. Proliferation, cytoskeletal morphology, and chondrogenic differentiation of encapsulated hMSCs were evaluated. The hMSCs adopted a highly spread morphology within the GFOGER-modified gels, whereas RGD induced a star-like spreading of the cells. hMSCs within GFOGER-modified degradable gels had a high proliferation rate compared with cells in peptide-free gels (p=0.017). Gene expression of type II collagen was highest in GFOGER-modified degradable gels after 21 days. Peptide incorporation increased GAG production in degradable gels after 7 and 21 days and GFOGER-modified degradable hydrogels had on average the highest GAG content, a finding that was confirmed by Alcian blue staining. In conclusion, the GFOGER peptide enhances proliferation in degradable PEG gels and provides a better chondrogenic microenvironment compared with the RGD peptide.

摘要

细胞微环境在指导干细胞的增殖和分化中起着至关重要的作用。细胞通过整合素与微环境相互作用,整合素可识别细胞外基质蛋白的特定肽序列。这种受体 - 配体结合对细胞命运有着深远影响。研究了人骨髓间充质干细胞(hMSCs)与三螺旋胶原模拟物GPC(GPP)5 - GFOGER - (GPP)5GPC - NH2以及纤连蛋白黏附肽RGD在通过迈克尔型加成化学形成的可降解或不可降解聚乙二醇(PEG)凝胶中的相互作用。评估了包封的hMSCs的增殖、细胞骨架形态和软骨分化情况。hMSCs在GFOGER修饰的凝胶中呈现高度铺展的形态,而RGD诱导细胞呈星状铺展。与无肽凝胶中的细胞相比,GFOGER修饰的可降解凝胶中的hMSCs具有较高的增殖率(p = 0.017)。21天后,II型胶原的基因表达在GFOGER修饰的可降解凝胶中最高。7天和21天后,肽的掺入增加了可降解凝胶中糖胺聚糖(GAG)的产生,并且GFOGER修饰的可降解水凝胶平均具有最高的GAG含量,这一发现通过阿尔新蓝染色得到证实。总之,与RGD肽相比,GFOGER肽可增强可降解PEG凝胶中的增殖,并提供更好的软骨分化微环境。

相似文献

1
GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells.
Tissue Eng Part A. 2014 Apr;20(7-8):1165-74. doi: 10.1089/ten.TEA.2013.0519. Epub 2014 Feb 10.
3
The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities.
Biomaterials. 2008 May;29(15):2370-7. doi: 10.1016/j.biomaterials.2008.01.035. Epub 2008 Mar 4.
4
Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
Biomaterials. 2010 Oct;31(28):7298-307. doi: 10.1016/j.biomaterials.2010.06.001.
5
The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
Biomaterials. 2011 May;32(14):3564-74. doi: 10.1016/j.biomaterials.2011.01.064. Epub 2011 Feb 21.
6
Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells.
J Biomed Mater Res A. 2009 Aug;90(2):456-64. doi: 10.1002/jbm.a.32112.
7
Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells.
Biomaterials. 2016 Aug;99:56-71. doi: 10.1016/j.biomaterials.2016.05.011. Epub 2016 May 10.

引用本文的文献

1
A versatile platform based on matrix metalloproteinase-sensitive peptides for novel diagnostic and therapeutic strategies in arthritis.
Bioact Mater. 2025 Jan 18;47:100-120. doi: 10.1016/j.bioactmat.2025.01.011. eCollection 2025 May.
2
Engineered biomaterials in stem cell-based regenerative medicine.
Life Med. 2023 Jul 20;2(4):lnad027. doi: 10.1093/lifemedi/lnad027. eCollection 2023 Aug.
3
Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration.
Bioact Mater. 2024 Sep 21;43:98-113. doi: 10.1016/j.bioactmat.2024.08.017. eCollection 2025 Jan.
4
Peptides for Targeting Chondrogenic Induction and Cartilage Regeneration in Osteoarthritis.
Cartilage. 2024 Sep 18:19476035241276406. doi: 10.1177/19476035241276406.
6
Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems.
ACS Biomater Sci Eng. 2023 Sep 11;9(9):5222-5254. doi: 10.1021/acsbiomaterials.3c00609. Epub 2023 Aug 16.
7
The Role of Extracellular Matrix (ECM) Adhesion Motifs in Functionalised Hydrogels.
Molecules. 2023 Jun 7;28(12):4616. doi: 10.3390/molecules28124616.
8
Peptide Regulation of Chondrogenic Stem Cell Differentiation.
Int J Mol Sci. 2023 May 8;24(9):8415. doi: 10.3390/ijms24098415.
9
Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration.
Front Bioeng Biotechnol. 2023 Jan 30;11:1117647. doi: 10.3389/fbioe.2023.1117647. eCollection 2023.
10
In-situ forming injectable GFOGER-conjugated BMSCs-laden hydrogels for osteochondral regeneration.
NPJ Regen Med. 2023 Jan 6;8(1):2. doi: 10.1038/s41536-022-00274-z.

本文引用的文献

3
Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels.
Eur Cell Mater. 2011 Sep 20;22:168-76; discussion 176-7. doi: 10.22203/ecm.v022a13.
4
Injectable Biodegradable Poly(ethylene glycol)/RGD Peptide Hybrid Hydrogels for in vitro Chondrogenesis of Human Mesenchymal Stem Cells.
Macromol Rapid Commun. 2010 Jul 1;31(13):1148-54. doi: 10.1002/marc.200900818. Epub 2010 May 25.
7
Articular cartilage: structure and regeneration.
Tissue Eng Part B Rev. 2010 Dec;16(6):617-27. doi: 10.1089/ten.TEB.2010.0191. Epub 2010 Nov 2.
8
Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
Biomaterials. 2010 Oct;31(28):7298-307. doi: 10.1016/j.biomaterials.2010.06.001.
9
Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype.
Nat Protoc. 2010 Jul;5(7):1294-311. doi: 10.1038/nprot.2010.81. Epub 2010 Jun 17.
10
Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.
Biomaterials. 2010 Jun;31(17):4639-56. doi: 10.1016/j.biomaterials.2010.02.044. Epub 2010 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验