Suppr超能文献

利用范例共识进行面部局部定位。

Localizing parts of faces using a consensus of exemplars.

机构信息

Columbia University, New York.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Dec;35(12):2930-40. doi: 10.1109/TPAMI.2013.23.

Abstract

We present a novel approach to localizing parts in images of human faces. The approach combines the output of local detectors with a nonparametric set of global models for the part locations based on over 1,000 hand-labeled exemplar images. By assuming that the global models generate the part locations as hidden variables, we derive a Bayesian objective function. This function is optimized using a consensus of models for these hidden variables. The resulting localizer handles a much wider range of expression, pose, lighting, and occlusion than prior ones. We show excellent performance on real-world face datasets such as Labeled Faces in the Wild (LFW) and a new Labeled Face Parts in the Wild (LFPW) and show that our localizer achieves state-of-the-art performance on the less challenging BioID dataset.

摘要

我们提出了一种新的方法来定位人脸图像中的部位。该方法结合了局部检测器的输出和基于 1000 多张手标记示例图像的局部位置的非参数全局模型。通过假设全局模型将部位位置作为隐藏变量生成,我们推导出一个贝叶斯目标函数。使用这些隐藏变量的模型共识来优化该函数。与之前的方法相比,所得到的定位器可以处理更广泛的表情、姿势、光照和遮挡情况。我们在真实世界的人脸数据集(如 Labeled Faces in the Wild (LFW) 和新的 Labeled Face Parts in the Wild (LFPW))上取得了优异的性能,并表明我们的定位器在挑战性较小的 BioID 数据集上达到了最新水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验