Suppr超能文献

使用回归树学习用于诊断特征的头影测量标志点。

Learning Cephalometric Landmarks for Diagnostic Features Using Regression Trees.

作者信息

Suhail Sameera, Harris Kayla, Sinha Gaurav, Schmidt Maayan, Durgekar Sujala, Mehta Shivam, Upadhyay Madhur

机构信息

Department of Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Private Practice, Lakewood, CO 80226, USA.

出版信息

Bioengineering (Basel). 2022 Oct 27;9(11):617. doi: 10.3390/bioengineering9110617.

Abstract

Lateral cephalograms provide important information regarding dental, skeletal, and soft-tissue parameters that are critical for orthodontic diagnosis and treatment planning. Several machine learning methods have previously been used for the automated localization of diagnostically relevant landmarks on lateral cephalograms. In this study, we applied an ensemble of regression trees to solve this problem. We found that despite the limited size of manually labeled images, we can improve the performance of landmark detection by augmenting the training set using a battery of simple image transforms. We further demonstrated the calculation of second-order features encoding the relative locations of landmarks, which are diagnostically more important than individual landmarks.

摘要

头颅侧位片提供了有关牙齿、骨骼和软组织参数的重要信息,这些信息对于正畸诊断和治疗计划至关重要。此前已有多种机器学习方法用于在头颅侧位片上自动定位诊断相关标志点。在本研究中,我们应用回归树集成来解决这一问题。我们发现,尽管手动标注图像的规模有限,但通过使用一系列简单图像变换扩充训练集,我们可以提高标志点检测的性能。我们进一步展示了编码标志点相对位置的二阶特征的计算,这些特征在诊断上比单个标志点更重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验