Suhail Sameera, Harris Kayla, Sinha Gaurav, Schmidt Maayan, Durgekar Sujala, Mehta Shivam, Upadhyay Madhur
Department of Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Private Practice, Lakewood, CO 80226, USA.
Bioengineering (Basel). 2022 Oct 27;9(11):617. doi: 10.3390/bioengineering9110617.
Lateral cephalograms provide important information regarding dental, skeletal, and soft-tissue parameters that are critical for orthodontic diagnosis and treatment planning. Several machine learning methods have previously been used for the automated localization of diagnostically relevant landmarks on lateral cephalograms. In this study, we applied an ensemble of regression trees to solve this problem. We found that despite the limited size of manually labeled images, we can improve the performance of landmark detection by augmenting the training set using a battery of simple image transforms. We further demonstrated the calculation of second-order features encoding the relative locations of landmarks, which are diagnostically more important than individual landmarks.
头颅侧位片提供了有关牙齿、骨骼和软组织参数的重要信息,这些信息对于正畸诊断和治疗计划至关重要。此前已有多种机器学习方法用于在头颅侧位片上自动定位诊断相关标志点。在本研究中,我们应用回归树集成来解决这一问题。我们发现,尽管手动标注图像的规模有限,但通过使用一系列简单图像变换扩充训练集,我们可以提高标志点检测的性能。我们进一步展示了编码标志点相对位置的二阶特征的计算,这些特征在诊断上比单个标志点更重要。