Suppr超能文献

壳聚糖在水溶液中具有很强的附着力和内聚力。

Strong adhesion and cohesion of chitosan in aqueous solutions.

机构信息

Department of Chemical Engineering, University of California at Santa Barbara , CA 93106, United States.

出版信息

Langmuir. 2013 Nov 19;29(46):14222-9. doi: 10.1021/la403124u. Epub 2013 Nov 6.

Abstract

Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0-8.5), achieving a maximum value at pH 3.0 after a contact time of 1 h (Wad ~ 6.4 mJ/m(2)). We also found weak or no cohesion between two opposing chitosan layers on mica in aqueous buffer until the critical contact time for maximum adhesion (chitosan-mica) was reached. Strong cohesion (Wco ~ 8.5 mJ/m(2)) between the films was measured with increasing contact times up to 1 h at pH 3.0, which is equivalent to ~60% of the strongest, previously reported, mussel underwater adhesion. Such time-dependent adhesion properties are most likely related to molecular or molecular group reorientations and interdigitations. At high pH (8.5), the solubility of chitosan changes drastically, causing the chitosan-chitosan (cohesion) interaction to be repulsive at all separation distances and contact times. The strong contact time and pH-dependent chitosan-chitosan cohesion and adhesion properties provide new insight into the development of chitosan-based load-bearing materials.

摘要

壳聚糖是一种存在于甲壳类动物和昆虫外骨骼中的承重生物大分子,是替代合成塑料化合物的有前途的生物聚合物。在这里,使用表面力仪器 (SFA) 研究了壳聚糖在水溶液中的表面相互作用,包括 pH 和接触时间的影响。壳聚糖薄膜在所有测试的 pH 值范围内(3.0-8.5)都表现出对云母的粘附性,在接触时间为 1 小时后在 pH 3.0 时达到最大值(Wad6.4 mJ/m²)。我们还发现,在达到最大粘附力(壳聚糖-云母)的临界接触时间之前,在水缓冲液中,两个 opposing 云母上的壳聚糖层之间存在弱或无内聚。在 pH 3.0 下,随着接触时间增加至 1 小时,测量到薄膜之间的强内聚(Wco8.5 mJ/m²),这相当于以前报道的贻贝水下粘附力的最强值的~60%。这种时间依赖性粘附特性很可能与分子或分子基团的重定向和互穿插有关。在高 pH(8.5)下,壳聚糖的溶解度会急剧变化,导致壳聚糖-壳聚糖(内聚)相互作用在所有分离距离和接触时间内都具有排斥性。强接触时间和 pH 依赖性的壳聚糖-壳聚糖内聚和粘附特性为基于壳聚糖的承重材料的开发提供了新的见解。

相似文献

1
Strong adhesion and cohesion of chitosan in aqueous solutions.
Langmuir. 2013 Nov 19;29(46):14222-9. doi: 10.1021/la403124u. Epub 2013 Nov 6.
2
Contact time- and pH-dependent adhesion and cohesion of low molecular weight chitosan coated surfaces.
Carbohydr Polym. 2015 Mar 6;117:887-894. doi: 10.1016/j.carbpol.2014.10.033. Epub 2014 Nov 5.
5
Adhesion and Cohesion Differences between Catechol- and Pyrogallol-Functionalized Chitosan.
Macromol Rapid Commun. 2023 Mar;44(6):e2200845. doi: 10.1002/marc.202200845. Epub 2022 Dec 13.
7
Probing molecular interactions of PEGylated chitosan in aqueous solutions using a surface force apparatus.
Phys Chem Chem Phys. 2019 Oct 7;21(37):20571-20581. doi: 10.1039/c9cp03189h. Epub 2019 Jul 31.
8
Mediation of the nanotribological properties of cellulose by chitosan adsorption.
Biomacromolecules. 2009 Mar 9;10(3):645-50. doi: 10.1021/bm801467w.
9
Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions.
J Colloid Interface Sci. 2011 Sep 1;361(1):397-9. doi: 10.1016/j.jcis.2011.05.063. Epub 2011 May 26.
10
Biosorbent for tungsten species removal from water: effects of co-occurring inorganic species.
J Colloid Interface Sci. 2005 Dec 15;292(2):344-53. doi: 10.1016/j.jcis.2005.06.016. Epub 2005 Jul 1.

引用本文的文献

1
Self-Healing Scaffolding Technology with Strong, Reversible Interactions under Physiological Conditions for Engineering Marbled Cultured Meat.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):31881-31897. doi: 10.1021/acsami.5c03479. Epub 2025 May 3.
4
Microparticles Loaded with A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity.
Pharmaceuticals (Basel). 2024 Nov 21;17(12):1565. doi: 10.3390/ph17121565.
7
Preparation strategies of mussel-inspired chitosan-based biomaterials for hemostasis.
Front Pharmacol. 2024 Aug 15;15:1439036. doi: 10.3389/fphar.2024.1439036. eCollection 2024.
8
Effect of Environmental pH on the Mechanics of Chitin and Chitosan: A Single-Molecule Study.
Polymers (Basel). 2024 Apr 5;16(7):995. doi: 10.3390/polym16070995.
9
Multifunctional Sodium Hyaluronate/Chitosan Foam Used as an Absorbable Hemostatic Material.
Bioengineering (Basel). 2023 Jul 21;10(7):868. doi: 10.3390/bioengineering10070868.

本文引用的文献

1
Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution.
J Chem Theory Comput. 2008 Dec 9;4(12):2141-9. doi: 10.1021/ct8002964. Epub 2008 Nov 8.
2
Stick-slip friction and wear of articular joints.
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):E567-74. doi: 10.1073/pnas.1222470110. Epub 2013 Jan 28.
3
Adhesion of mussel foot proteins to different substrate surfaces.
J R Soc Interface. 2013 Feb;10(79):20120759. doi: 10.1098/rsif.2012.0759.
4
Adhesion mechanism in a DOPA-deficient foot protein from green mussels().
Soft Matter. 2012;8(20):5640-5648. doi: 10.1039/C2SM25173F. Epub 2012 Apr 16.
5
Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue.
Biochemistry. 2012 Aug 21;51(33):6511-8. doi: 10.1021/bi3002538. Epub 2012 Aug 8.
6
Adhesion and hemifusion of cytoplasmic myelin lipid membranes are highly dependent on the lipid composition.
Biochim Biophys Acta. 2012 Mar;1818(3):402-10. doi: 10.1016/j.bbamem.2011.10.015. Epub 2011 Oct 25.
7
Adaptive mechanically controlled lubrication mechanism found in articular joints.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5255-9. doi: 10.1073/pnas.1101002108. Epub 2011 Mar 7.
8
Chitosan molecular structure as a function of N-acetylation.
Biopolymers. 2011 Jul;95(7):448-60. doi: 10.1002/bip.21602. Epub 2011 Feb 16.
9
Conformational flexibility of chitosan: a molecular modeling study.
Biomacromolecules. 2010 Nov 8;11(11):3196-207. doi: 10.1021/bm100736w. Epub 2010 Oct 20.
10
Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques.
J Biol Chem. 2010 Aug 13;285(33):25850-8. doi: 10.1074/jbc.M110.133157. Epub 2010 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验