Department of Psychology, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA; Delta Center, The University of Iowa, Iowa City, IA 52242, USA.
Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.
During active (or REM) sleep, infant mammals exhibit myoclonic twitches of skeletal muscles throughout the body, generating jerky, discrete movements of the distal limbs. Hundreds of thousands of limb twitches are produced daily, and sensory feedback from these movements is a substantial driver of infant brain activity, suggesting that they contribute to motor learning and sensorimotor integration. It is not known whether the production of twitches is random or spatiotemporally structured, or whether the patterning of twitching changes with age; such information is critical for understanding how twitches contribute to development.
We used high-speed videography and 3D motion tracking to assess the spatiotemporal structure of twitching at forelimb joints in 2- and 8-day-old rats. At both ages, twitches exhibited highly structured spatiotemporal properties at multiple timescales, including synergistic and multijoint movements within and across forelimbs. Hierarchical cluster analysis and latent class analysis revealed developmental changes in twitching quantity and patterning. Critically, we found evidence for a selectionist process whereby movement patterns at the early age compete for retention and expression over development.
These findings indicate that twitches are not produced randomly but are highly structured at multiple timescales. This structure has important implications for understanding brain and spinal mechanisms that produce twitching, and the role that sensory feedback from twitching plays in sensorimotor system development. We propose that twitches represent a heretofore-overlooked form of motor exploration that helps animals probe the biomechanics of their limbs, build motor synergies, and lay a foundation for complex, automatic, and goal-directed wake movements.
在活跃(或 REM)睡眠期间,哺乳动物幼崽会全身骨骼肌肉出现肌阵挛抽搐,导致四肢末端出现急促、离散的运动。每天会产生数十万次肢体抽搐,这些运动的感觉反馈是婴儿大脑活动的主要驱动因素,这表明它们有助于运动学习和感觉运动整合。目前尚不清楚抽搐的产生是随机的还是具有时空结构的,或者抽搐的模式是否随年龄而变化;这些信息对于理解抽搐如何促进发育至关重要。
我们使用高速录像和 3D 运动跟踪技术评估了 2 天和 8 天大的大鼠前肢关节抽搐的时空结构。在这两个年龄段,抽搐在多个时间尺度上都表现出高度结构化的时空特性,包括前肢内和跨关节的协同和多关节运动。层次聚类分析和潜在类别分析显示了抽搐数量和模式的发育变化。关键的是,我们发现了一种选择主义过程的证据,即早期的运动模式在发育过程中竞争保留和表达。
这些发现表明抽搐不是随机产生的,而是在多个时间尺度上具有高度结构化。这种结构对于理解产生抽搐的大脑和脊髓机制以及抽搐的感觉反馈在感觉运动系统发育中的作用具有重要意义。我们提出,抽搐代表了一种迄今为止被忽视的运动探索形式,它有助于动物探索其肢体的生物力学,建立运动协同作用,并为复杂、自动和有目的的清醒运动奠定基础。