Suppr超能文献

快速眼动睡眠抽搐的时空结构揭示了运动协同的发育起源。

Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies.

机构信息

Department of Psychology, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA; Delta Center, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.

Abstract

BACKGROUND

During active (or REM) sleep, infant mammals exhibit myoclonic twitches of skeletal muscles throughout the body, generating jerky, discrete movements of the distal limbs. Hundreds of thousands of limb twitches are produced daily, and sensory feedback from these movements is a substantial driver of infant brain activity, suggesting that they contribute to motor learning and sensorimotor integration. It is not known whether the production of twitches is random or spatiotemporally structured, or whether the patterning of twitching changes with age; such information is critical for understanding how twitches contribute to development.

RESULTS

We used high-speed videography and 3D motion tracking to assess the spatiotemporal structure of twitching at forelimb joints in 2- and 8-day-old rats. At both ages, twitches exhibited highly structured spatiotemporal properties at multiple timescales, including synergistic and multijoint movements within and across forelimbs. Hierarchical cluster analysis and latent class analysis revealed developmental changes in twitching quantity and patterning. Critically, we found evidence for a selectionist process whereby movement patterns at the early age compete for retention and expression over development.

CONCLUSIONS

These findings indicate that twitches are not produced randomly but are highly structured at multiple timescales. This structure has important implications for understanding brain and spinal mechanisms that produce twitching, and the role that sensory feedback from twitching plays in sensorimotor system development. We propose that twitches represent a heretofore-overlooked form of motor exploration that helps animals probe the biomechanics of their limbs, build motor synergies, and lay a foundation for complex, automatic, and goal-directed wake movements.

摘要

背景

在活跃(或 REM)睡眠期间,哺乳动物幼崽会全身骨骼肌肉出现肌阵挛抽搐,导致四肢末端出现急促、离散的运动。每天会产生数十万次肢体抽搐,这些运动的感觉反馈是婴儿大脑活动的主要驱动因素,这表明它们有助于运动学习和感觉运动整合。目前尚不清楚抽搐的产生是随机的还是具有时空结构的,或者抽搐的模式是否随年龄而变化;这些信息对于理解抽搐如何促进发育至关重要。

结果

我们使用高速录像和 3D 运动跟踪技术评估了 2 天和 8 天大的大鼠前肢关节抽搐的时空结构。在这两个年龄段,抽搐在多个时间尺度上都表现出高度结构化的时空特性,包括前肢内和跨关节的协同和多关节运动。层次聚类分析和潜在类别分析显示了抽搐数量和模式的发育变化。关键的是,我们发现了一种选择主义过程的证据,即早期的运动模式在发育过程中竞争保留和表达。

结论

这些发现表明抽搐不是随机产生的,而是在多个时间尺度上具有高度结构化。这种结构对于理解产生抽搐的大脑和脊髓机制以及抽搐的感觉反馈在感觉运动系统发育中的作用具有重要意义。我们提出,抽搐代表了一种迄今为止被忽视的运动探索形式,它有助于动物探索其肢体的生物力学,建立运动协同作用,并为复杂、自动和有目的的清醒运动奠定基础。

相似文献

1
Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies.
Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.
2
Development of twitching in sleeping infant mice depends on sensory experience.
Curr Biol. 2015 Mar 2;25(5):656-62. doi: 10.1016/j.cub.2015.01.022. Epub 2015 Feb 19.
3
Myoclonic Twitching and Sleep-Dependent Plasticity in the Developing Sensorimotor System.
Curr Sleep Med Rep. 2015 Mar;1(1):74-79. doi: 10.1007/s40675-015-0009-9.
4
Spatiotemporal organization of myoclonic twitching in sleeping human infants.
Dev Psychobiol. 2020 Sep;62(6):697-710. doi: 10.1002/dev.21954. Epub 2020 Feb 9.
5
Twitches emerge postnatally during quiet sleep in human infants and are synchronized with sleep spindles.
Curr Biol. 2021 Aug 9;31(15):3426-3432.e4. doi: 10.1016/j.cub.2021.05.038. Epub 2021 Jun 17.
6
Sensorimotor processing in the newborn rat red nucleus during active sleep.
J Neurosci. 2015 May 27;35(21):8322-32. doi: 10.1523/JNEUROSCI.0564-15.2015.
7
Dual mechanisms of twitching during sleep in neonatal rats.
Behav Neurosci. 1994 Dec;108(6):1196-202. doi: 10.1037//0735-7044.108.6.1196.
8
Twitching in sensorimotor development from sleeping rats to robots.
Curr Biol. 2013 Jun 17;23(12):R532-7. doi: 10.1016/j.cub.2013.04.075.
9
REM sleep twitches rouse nascent cerebellar circuits: Implications for sensorimotor development.
Dev Neurobiol. 2015 Oct;75(10):1140-53. doi: 10.1002/dneu.22177. Epub 2014 Apr 25.
10
Rapid whisker movements in sleeping newborn rats.
Curr Biol. 2012 Nov 6;22(21):2075-80. doi: 10.1016/j.cub.2012.09.009. Epub 2012 Oct 18.

引用本文的文献

1
Sensory modality-specific wiring of thalamocortical circuits.
Nat Rev Neurosci. 2025 Jul 30. doi: 10.1038/s41583-025-00945-y.
2
Loss of MeCP2 leads to sleep deficits that are time-of-day dependent and worsen with sleep deprivation.
Neurobiol Sleep Circadian Rhythms. 2025 Jun 11;19:100132. doi: 10.1016/j.nbscr.2025.100132. eCollection 2025 Nov.
3
Unlearning Incorrect Associations in Word Learning: Evidence From Eye-Tracking.
Cogn Sci. 2025 Jun;49(6):e70077. doi: 10.1111/cogs.70077.
4
Multi-region processing during sleep for memory and cognition.
Proc Jpn Acad Ser B Phys Biol Sci. 2025;101(3):107-128. doi: 10.2183/pjab.101.008.
5
Infant sleep EEG features at 4 months as biomarkers of neurodevelopment at 18 months.
Pediatr Res. 2025 Feb 20. doi: 10.1038/s41390-025-03893-6.
7
Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients.
Mov Disord. 2025 Mar;40(3):456-467. doi: 10.1002/mds.30091. Epub 2024 Dec 20.
8
Quantitative Electroencephalography in Term Neonates During the Early Postnatal Period Across Various Sleep States.
Nat Sci Sleep. 2024 Jul 22;16:1011-1025. doi: 10.2147/NSS.S472595. eCollection 2024.
9
Thalamocortical Dynamics during Rapid Eye Movement Sleep in the Mouse Somatosensory Pathway.
J Neurosci. 2024 Jun 19;44(25):e0158242024. doi: 10.1523/JNEUROSCI.0158-24.2024.
10
Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep.
J Neurosci. 2024 Jun 12;44(24):e1517232024. doi: 10.1523/JNEUROSCI.1517-23.2024.

本文引用的文献

1
Twitching in sensorimotor development from sleeping rats to robots.
Curr Biol. 2013 Jun 17;23(12):R532-7. doi: 10.1016/j.cub.2013.04.075.
3
Rapid whisker movements in sleeping newborn rats.
Curr Biol. 2012 Nov 6;22(21):2075-80. doi: 10.1016/j.cub.2012.09.009. Epub 2012 Oct 18.
4
Self-organization of reflexive behavior from spontaneous motor activity.
Biol Cybern. 2013 Feb;107(1):25-37. doi: 10.1007/s00422-012-0521-7. Epub 2012 Sep 28.
6
A motor signature of REM sleep behavior disorder.
Mov Disord. 2012 Mar;27(3):428-31. doi: 10.1002/mds.24044. Epub 2011 Dec 15.
7
Locomotor primitives in newborn babies and their development.
Science. 2011 Nov 18;334(6058):997-9. doi: 10.1126/science.1210617.
8
Beyond dreams: do sleep-related movements contribute to brain development?
Front Neurol. 2010 Nov 1;1:140. doi: 10.3389/fneur.2010.00140. eCollection 2010.
9
Development and functional organization of spinal locomotor circuits.
Curr Opin Neurobiol. 2011 Feb;21(1):100-9. doi: 10.1016/j.conb.2010.09.004.
10
Neocortical activation of the hippocampus during sleep in infant rats.
J Neurosci. 2010 Mar 3;30(9):3438-49. doi: 10.1523/JNEUROSCI.4832-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验