Suppr超能文献

睡眠中小鼠幼崽抽搐行为的发展取决于感觉经验。

Development of twitching in sleeping infant mice depends on sensory experience.

作者信息

Blumberg Mark S, Coleman Cassandra M, Sokoloff Greta, Weiner Joshua A, Fritzsch Bernd, McMurray Bob

机构信息

Department of Psychology, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA; Delta Center, The University of Iowa, Iowa City, IA 52242, USA.

Department of Psychology, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

Curr Biol. 2015 Mar 2;25(5):656-62. doi: 10.1016/j.cub.2015.01.022. Epub 2015 Feb 19.

Abstract

Myoclonic twitches are jerky movements that occur exclusively and abundantly during active (or REM) sleep in mammals, especially in early development [1-4]. In rat pups, limb twitches exhibit a complex spatiotemporal structure that changes across early development [5]. However, it is not known whether this developmental change is influenced by sensory experience, which is a prerequisite to the notion that sensory feedback from twitches not only activates sensorimotor circuits but modifies them [4]. Here, we investigated the contributions of proprioception to twitching in newborn ErbB2 conditional knockout mice that lack muscle spindles and grow up to exhibit dysfunctional proprioception [6-8]. High-speed videography of forelimb twitches unexpectedly revealed a category of reflex-like twitching-comprising an agonist twitch followed immediately by an antagonist twitch-that developed postnatally in wild-types/heterozygotes, but not in knockouts. Contrary to evidence from adults that spinal reflexes are inhibited during twitching [9-11], this finding suggests that twitches trigger the monosynaptic stretch reflex and, by doing so, contribute to its activity-dependent development [12-14]. Next, we assessed developmental changes in the frequency and organization (i.e., entropy) of more-complex, multi-joint patterns of twitching; again, wild-types/heterozygotes exhibited developmental changes in twitch patterning that were not seen in knockouts. Thus, targeted deletion of a peripheral sensor alters the normal development of local and global features of twitching, demonstrating that twitching is shaped by sensory experience. These results also highlight the potential use of twitching as a uniquely informative diagnostic tool for assessing the functional status of spinal and supraspinal circuits.

摘要

肌阵挛抽搐是一种急促的运动,仅在哺乳动物的活跃(或快速眼动)睡眠期间大量出现,尤其是在早期发育阶段[1-4]。在新生大鼠中,肢体抽搐表现出复杂的时空结构,且在早期发育过程中会发生变化[5]。然而,尚不清楚这种发育变化是否受感觉经验的影响,而感觉经验是抽搐的感觉反馈不仅激活感觉运动回路而且对其进行修饰这一观点的前提条件[4]。在此,我们研究了本体感觉对新生ErbB2条件性敲除小鼠抽搐的影响,这些小鼠缺乏肌梭,长大后表现出功能失调的本体感觉[6-8]。对前肢抽搐的高速摄像意外地发现了一类类似反射的抽搐——包括一个主动肌抽搐后紧接着一个拮抗肌抽搐——在野生型/杂合子小鼠出生后出现,但在敲除小鼠中未出现。与成年个体的证据相反,即脊髓反射在抽搐期间受到抑制[9-11],这一发现表明抽搐会触发单突触牵张反射,并由此促进其依赖活动的发育[12-14]。接下来,我们评估了更复杂的多关节抽搐模式的频率和组织(即熵)的发育变化;同样,野生型/杂合子小鼠在抽搐模式上表现出发育变化,而敲除小鼠未出现这种变化。因此,对一种外周感受器的靶向缺失改变了抽搐局部和整体特征的正常发育,表明抽搐是由感觉经验塑造的。这些结果还突出了抽搐作为一种独特的信息丰富的诊断工具,用于评估脊髓和脊髓上神经回路功能状态的潜在用途。

相似文献

1
Development of twitching in sleeping infant mice depends on sensory experience.
Curr Biol. 2015 Mar 2;25(5):656-62. doi: 10.1016/j.cub.2015.01.022. Epub 2015 Feb 19.
2
Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies.
Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.
3
Spatiotemporal organization of myoclonic twitching in sleeping human infants.
Dev Psychobiol. 2020 Sep;62(6):697-710. doi: 10.1002/dev.21954. Epub 2020 Feb 9.
4
Twitches emerge postnatally during quiet sleep in human infants and are synchronized with sleep spindles.
Curr Biol. 2021 Aug 9;31(15):3426-3432.e4. doi: 10.1016/j.cub.2021.05.038. Epub 2021 Jun 17.
5
Proprioception and myoclonus.
Neurophysiol Clin. 2006 Sep-Dec;36(5-6):299-308. doi: 10.1016/j.neucli.2006.11.001. Epub 2006 Nov 30.
6
Myoclonic Twitching and Sleep-Dependent Plasticity in the Developing Sensorimotor System.
Curr Sleep Med Rep. 2015 Mar;1(1):74-79. doi: 10.1007/s40675-015-0009-9.
7
Sensorimotor processing in the newborn rat red nucleus during active sleep.
J Neurosci. 2015 May 27;35(21):8322-32. doi: 10.1523/JNEUROSCI.0564-15.2015.
8
Twitching in sensorimotor development from sleeping rats to robots.
Curr Biol. 2013 Jun 17;23(12):R532-7. doi: 10.1016/j.cub.2013.04.075.
9
Dual mechanisms of twitching during sleep in neonatal rats.
Behav Neurosci. 1994 Dec;108(6):1196-202. doi: 10.1037//0735-7044.108.6.1196.
10
Beyond dreams: do sleep-related movements contribute to brain development?
Front Neurol. 2010 Nov 1;1:140. doi: 10.3389/fneur.2010.00140. eCollection 2010.

引用本文的文献

1
Sensorimotor variability distinguishes early features of cognition in toddlers with autism.
iScience. 2024 Aug 6;27(9):110685. doi: 10.1016/j.isci.2024.110685. eCollection 2024 Sep 20.
2
Mesoscale calcium imaging evolution and contribution to developmental neuroscience.
Front Neurosci. 2023 Aug 1;17:1210199. doi: 10.3389/fnins.2023.1210199. eCollection 2023.
3
Sleep, plasticity, and sensory neurodevelopment.
Neuron. 2022 Oct 19;110(20):3230-3242. doi: 10.1016/j.neuron.2022.08.005. Epub 2022 Sep 8.
4
Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss.
Front Behav Neurosci. 2022 Jan 20;15:777799. doi: 10.3389/fnbeh.2021.777799. eCollection 2021.
5
THE DEVELOPING BRAIN REVEALED DURING SLEEP.
Curr Opin Physiol. 2020 Jun;15:14-22. doi: 10.1016/j.cophys.2019.11.002. Epub 2019 Nov 18.
6
Spatiotemporal organization of myoclonic twitching in sleeping human infants.
Dev Psychobiol. 2020 Sep;62(6):697-710. doi: 10.1002/dev.21954. Epub 2020 Feb 9.
7
The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction.
Front Neuroanat. 2019 Apr 16;13:41. doi: 10.3389/fnana.2019.00041. eCollection 2019.
8
Twitches, Blinks, and Fidgets: Important Generators of Ongoing Neural Activity.
Neuroscientist. 2019 Aug;25(4):298-313. doi: 10.1177/1073858418805427. Epub 2018 Oct 12.
9
Active Sleep Promotes Functional Connectivity in Developing Sensorimotor Networks.
Bioessays. 2018 Apr;40(4):e1700234. doi: 10.1002/bies.201700234. Epub 2018 Mar 6.

本文引用的文献

1
Self-generated movements with "unexpected" sensory consequences.
Curr Biol. 2014 Sep 22;24(18):2136-2141. doi: 10.1016/j.cub.2014.07.053. Epub 2014 Aug 14.
2
From spontaneous motor activity to coordinated behaviour: a developmental model.
PLoS Comput Biol. 2014 Jul 24;10(7):e1003653. doi: 10.1371/journal.pcbi.1003653. eCollection 2014 Jul.
3
REM sleep twitches rouse nascent cerebellar circuits: Implications for sensorimotor development.
Dev Neurobiol. 2015 Oct;75(10):1140-53. doi: 10.1002/dneu.22177. Epub 2014 Apr 25.
4
Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies.
Curr Biol. 2013 Nov 4;23(21):2100-9. doi: 10.1016/j.cub.2013.08.055. Epub 2013 Oct 17.
5
Twitching in sensorimotor development from sleeping rats to robots.
Curr Biol. 2013 Jun 17;23(12):R532-7. doi: 10.1016/j.cub.2013.04.075.
6
Rapid whisker movements in sleeping newborn rats.
Curr Biol. 2012 Nov 6;22(21):2075-80. doi: 10.1016/j.cub.2012.09.009. Epub 2012 Oct 18.
8
The role of muscle spindles in the development of the monosynaptic stretch reflex.
J Neurophysiol. 2012 Jul;108(1):83-90. doi: 10.1152/jn.00074.2012. Epub 2012 Apr 4.
9
Conditional modeling and the jitter method of spike resampling.
J Neurophysiol. 2012 Jan;107(2):517-31. doi: 10.1152/jn.00633.2011. Epub 2011 Oct 26.
10
Beyond dreams: do sleep-related movements contribute to brain development?
Front Neurol. 2010 Nov 1;1:140. doi: 10.3389/fneur.2010.00140. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验