Suppr超能文献

生物物理调控表观遗传状态和细胞重编程。

Biophysical regulation of epigenetic state and cell reprogramming.

机构信息

1] UC Berkeley & UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, California 94720/94143, USA [2] Department of Bioengineering, University of California, Berkeley, B108A Stanley Hall, Berkeley, California 94720-1762, USA.

出版信息

Nat Mater. 2013 Dec;12(12):1154-62. doi: 10.1038/nmat3777. Epub 2013 Oct 20.

Abstract

Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells' epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)--a subunit of H3 methyltranferase--by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.

摘要

生化因素可帮助将体细胞重编程为多能干细胞,但在重编程过程中生物物理因素的作用尚不清楚。本文中,我们发现,以细胞黏附底物表面平行微沟槽形式存在的生物物理线索可替代小分子表观遗传修饰剂的作用,从而显著提高重编程效率。该机制依赖于细胞表观遗传状态的力学调节。具体而言,微沟槽表面可降低组蛋白去乙酰化酶活性并上调 WD 重复结构域 5(H3 甲基转移酶的一个亚基)的表达,导致组蛋白 H3 乙酰化和甲基化增加。我们还发现,微形貌可促进成体纤维母细胞的间充质到上皮的转变。具有定向纤维排列的纳米纤维支架产生的效果类似于微沟槽产生的效果,表明细胞形态的变化可能是调节表观遗传状态的原因。这些发现对于细胞生物学以及优化用于细胞工程应用的生物材料具有重要意义。

相似文献

1
Biophysical regulation of epigenetic state and cell reprogramming.
Nat Mater. 2013 Dec;12(12):1154-62. doi: 10.1038/nmat3777. Epub 2013 Oct 20.
2
Cell reprogramming: Into the groove.
Nat Mater. 2013 Dec;12(12):1082-4. doi: 10.1038/nmat3821.
3
Cell reprogramming into the pluripotent state using graphene based substrates.
Biomaterials. 2014 Sep;35(29):8321-9. doi: 10.1016/j.biomaterials.2014.05.096. Epub 2014 Jul 2.
4
Permissive epigenomes endow reprogramming competence to transcriptional regulators.
Nat Chem Biol. 2021 Jan;17(1):47-56. doi: 10.1038/s41589-020-0618-6. Epub 2020 Aug 17.
5
Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts.
J Cell Sci. 2016 Dec 15;129(24):4576-4591. doi: 10.1242/jcs.194035. Epub 2016 Nov 14.
6
Chromatin-modifying enzymes as modulators of reprogramming.
Nature. 2012 Mar 4;483(7391):598-602. doi: 10.1038/nature10953.
10
Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency.
Stem Cell Reports. 2020 Dec 8;15(6):1233-1245. doi: 10.1016/j.stemcr.2020.08.011. Epub 2020 Sep 24.

引用本文的文献

1
Nano-Biosensors for mRNA-Based Cell Sorting Using Intracellular Markers at the Early Stage of Cell Reprogramming.
Adv Funct Mater. 2025 Jan 2;35(1). doi: 10.1002/adfm.202410910. Epub 2024 Nov 30.
2
Mechanical Cell Reprogramming on Tissue-Mimicking Hydrogels for Cancer Cell Transdifferentiation.
Research (Wash D C). 2025 Aug 18;8:0810. doi: 10.34133/research.0810. eCollection 2025.
5
Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials.
Int J Mol Sci. 2025 Apr 29;26(9):4242. doi: 10.3390/ijms26094242.
6
Light-Responsive Liquid Crystal Surface Topographies for Dynamic Stimulation of Cells.
ACS Appl Mater Interfaces. 2025 May 14;17(19):27871-27881. doi: 10.1021/acsami.5c02526. Epub 2025 May 3.
7
Viscoelastic extracellular matrix enhances epigenetic remodeling and cellular plasticity.
Nat Commun. 2025 Apr 30;16(1):4054. doi: 10.1038/s41467-025-59190-7.
9
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
10
Topological cues of microparticles train stem cells for tissue repair via mechanotransduction.
Bioact Mater. 2025 Mar 3;48:531-549. doi: 10.1016/j.bioactmat.2025.02.032. eCollection 2025 Jun.

本文引用的文献

1
Mechanisms and models of somatic cell reprogramming.
Nat Rev Genet. 2013 Jun;14(6):427-39. doi: 10.1038/nrg3473.
2
Current methods for inducing pluripotency in somatic cells.
Adv Mater. 2013 May 28;25(20):2765-71. doi: 10.1002/adma.201204874. Epub 2013 Mar 26.
3
Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells.
Cell Stem Cell. 2012 Oct 5;11(4):471-6. doi: 10.1016/j.stem.2012.07.007.
5
Drug-eluting microfibrous patches for the local delivery of rolipram in spinal cord repair.
J Control Release. 2012 Aug 10;161(3):910-7. doi: 10.1016/j.jconrel.2012.05.034. Epub 2012 May 23.
6
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
Nature. 2012 May 31;485(7400):593-8. doi: 10.1038/nature11044.
7
Direct conversion of fibroblasts into stably expandable neural stem cells.
Cell Stem Cell. 2012 Apr 6;10(4):473-9. doi: 10.1016/j.stem.2012.03.003. Epub 2012 Mar 22.
8
Chromatin-modifying enzymes as modulators of reprogramming.
Nature. 2012 Mar 4;483(7391):598-602. doi: 10.1038/nature10953.
10
Epigenetic factors influencing resistance to nuclear reprogramming.
Trends Genet. 2011 Dec;27(12):516-25. doi: 10.1016/j.tig.2011.08.002. Epub 2011 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验