1] UC Berkeley & UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, California 94720/94143, USA [2] Department of Bioengineering, University of California, Berkeley, B108A Stanley Hall, Berkeley, California 94720-1762, USA.
Nat Mater. 2013 Dec;12(12):1154-62. doi: 10.1038/nmat3777. Epub 2013 Oct 20.
Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells' epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)--a subunit of H3 methyltranferase--by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.
生化因素可帮助将体细胞重编程为多能干细胞,但在重编程过程中生物物理因素的作用尚不清楚。本文中,我们发现,以细胞黏附底物表面平行微沟槽形式存在的生物物理线索可替代小分子表观遗传修饰剂的作用,从而显著提高重编程效率。该机制依赖于细胞表观遗传状态的力学调节。具体而言,微沟槽表面可降低组蛋白去乙酰化酶活性并上调 WD 重复结构域 5(H3 甲基转移酶的一个亚基)的表达,导致组蛋白 H3 乙酰化和甲基化增加。我们还发现,微形貌可促进成体纤维母细胞的间充质到上皮的转变。具有定向纤维排列的纳米纤维支架产生的效果类似于微沟槽产生的效果,表明细胞形态的变化可能是调节表观遗传状态的原因。这些发现对于细胞生物学以及优化用于细胞工程应用的生物材料具有重要意义。