Almquist Zack W, Butts Carter T
Department of Sociology, School of Statistics, and the Minnesota Population Center, University of Minnesota, Minneapolis, MN 55455 e-mail:
Polit Anal. 2013 Oct;21(4):430-448. doi: 10.1093/pan/mpt016.
Methods for analysis of network dynamics have seen great progress in the past decade. This article shows how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data context. We also provide practical heuristics for model building and assessment. We illustrate the power of these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential election cycle. This is a particularly interesting case because it marks the debut of Internet-based media such as blogs and social networking web sites as institutionally recognized features of the American political landscape. Using a longitudinal sample of all Democratic National Convention/Republican National Convention-designated blog citation networks, we are able to test the influence of various strategic, institutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political events on the propensity of blogs to cite one another over time. Using a combination of deviance-based model selection criteria and simulation-based model adequacy tests, we identify the combination of processes that best characterizes the choice behavior of the contending blogs.
在过去十年中,网络动力学分析方法取得了巨大进展。本文展示了动态网络逻辑回归技术(时间指数随机图模型的一种特殊情况)如何用于在面板数据背景下为网络动力学实现决策理论模型。我们还提供了模型构建和评估的实用启发法。通过将这些技术应用于2004年美国总统选举周期内抽样的动态博客网络,我们展示了这些技术的强大之处。这是一个特别有趣的案例,因为它标志着博客和社交网站等基于互联网的媒体首次成为美国政治格局中得到机构认可的特征。利用所有民主党全国代表大会/共和党全国代表大会指定的博客引用网络的纵向样本,我们能够测试各种战略、制度和平衡理论机制以及季节性和政治事件等外部因素对博客随时间相互引用倾向的影响。通过结合基于偏差的模型选择标准和基于模拟的模型充分性测试,我们确定了最能描述竞争博客选择行为的过程组合。