Suppr超能文献

含缺失数据的动态网络分析:理论与方法

DYNAMIC NETWORK ANALYSIS WITH MISSING DATA: THEORY AND METHODS.

作者信息

Almquist Zack W, Butts Carter T

机构信息

Department of Sociology and School of Statistics, University of Minnesota, Minnesota 55455, USA.

Departments of Sociology, Statistics, EECS and IMBS, University of California, Irvine, CA 92697, USA.

出版信息

Stat Sin. 2018 Jul;28(3):1245-1264. doi: 10.5705/ss.202016.0108.

Abstract

Statistical methods for dynamic network analysis have advanced greatly in the past decade. This article extends current estimation methods for dynamic network logistic regression (DNR) models, a subfamily of the Temporal Exponential-family Random Graph Models, to network panel data which contain missing data in the edge and/or vertex sets. We begin by reviewing DNR inference in the complete data case. We then provide a missing data framework for DNR families akin to that of Little and Rubin (2002) or Gile and Handcock (2010a). We discuss several methods for dealing with missing data, including multiple imputation (MI). We consider the computational complexity of the MI methods in the DNR case and propose a scalable, design-based approach that exploits the simplifying assumptions of DNR. We dub this technique the "complete-case" method. Finally, we examine the performance of this method via a simulation study of induced missingness in two classic network data sets.

摘要

在过去十年中,动态网络分析的统计方法有了很大进展。本文将当前用于动态网络逻辑回归(DNR)模型(时间指数族随机图模型的一个子族)的估计方法扩展到边集和/或顶点集包含缺失数据的网络面板数据。我们首先回顾完整数据情况下的DNR推断。然后,我们为DNR族提供一个类似于Little和Rubin(2002年)或Gile和Handcock(2010a)的缺失数据框架。我们讨论了几种处理缺失数据的方法,包括多重填补(MI)。我们考虑了DNR情况下MI方法的计算复杂性,并提出了一种可扩展的、基于设计的方法,该方法利用了DNR的简化假设。我们将这种技术称为“完整案例”方法。最后,我们通过对两个经典网络数据集的诱导缺失进行模拟研究,检验了该方法的性能。

相似文献

1
DYNAMIC NETWORK ANALYSIS WITH MISSING DATA: THEORY AND METHODS.
Stat Sin. 2018 Jul;28(3):1245-1264. doi: 10.5705/ss.202016.0108.
2
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Sociol Methodol. 2014 Aug 1;44(1):273-321. doi: 10.1177/0081175013520159.
3
Imputation strategies for missing binary outcomes in cluster randomized trials.
BMC Med Res Methodol. 2011 Feb 16;11:18. doi: 10.1186/1471-2288-11-18.
4
A nonparametric multiple imputation approach for missing categorical data.
BMC Med Res Methodol. 2017 Jun 6;17(1):87. doi: 10.1186/s12874-017-0360-2.
5
An approximation method for improving dynamic network model fitting.
J Comput Graph Stat. 2015;24(2):502-519. doi: 10.1080/10618600.2014.903087.
7
Outcome-sensitive multiple imputation: a simulation study.
BMC Med Res Methodol. 2017 Jan 9;17(1):2. doi: 10.1186/s12874-016-0281-5.
8
Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models.
Stat Med. 2019 Feb 28;38(5):792-808. doi: 10.1002/sim.8004. Epub 2018 Oct 16.
9
Multiple imputation with missing data indicators.
Stat Methods Med Res. 2021 Dec;30(12):2685-2700. doi: 10.1177/09622802211047346. Epub 2021 Oct 13.

引用本文的文献

1
Improving and Extending STERGM Approximations Based on Cross-Sectional Data and Tie Durations.
J Comput Graph Stat. 2024;33(1):166-180. doi: 10.1080/10618600.2023.2233593. Epub 2023 Aug 29.

本文引用的文献

1
2
MODELING SOCIAL NETWORKS FROM SAMPLED DATA.
Ann Appl Stat. 2010;4(1):5-25. doi: 10.1214/08-AOAS221.
3
Local dependence in random graph models: characterization, properties and statistical inference.
J Am Stat Assoc. 2015 Jun 1;77(3):647-676. doi: 10.1111/rssb.12081.
4
A FLEXIBLE PARAMETERIZATION FOR BASELINE MEAN DEGREE IN MULTIPLE-NETWORK ERGMS.
J Math Sociol. 2015;39(3):163-167. doi: 10.1080/0022250X.2014.967851.
5
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Sociol Methodol. 2014 Aug 1;44(1):273-321. doi: 10.1177/0081175013520159.
9
Respondent-Driven Sampling: An Assessment of Current Methodology.
Sociol Methodol. 2010 Aug;40(1):285-327. doi: 10.1111/j.1467-9531.2010.01223.x.
10
Coevolution of dynamical states and interactions in dynamic networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):065102. doi: 10.1103/PhysRevE.69.065102. Epub 2004 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验