Klumb Chad, Morris Martina, Goodreau Steven M, Jenness Samuel M
Center for Studies in Demography and Ecology, University of Washington.
Professor Emerita, University of Washington.
J Comput Graph Stat. 2024;33(1):166-180. doi: 10.1080/10618600.2023.2233593. Epub 2023 Aug 29.
Temporal exponential-family random graph models (TERGMs) are a flexible class of models for network ties that change over time. Separable TERGMs (STERGMs) are a subclass of TERGMs in which the dynamics of tie formation and dissolution can be separated within each discrete time step and may depend on different factors. The Carnegie et al. (2015) approximation improves estimation efficiency for a subclass of STERGMs, allowing them to be reliably estimated from inexpensive cross-sectional study designs. This approximation adapts to cross-sectional data by attempting to construct a STERGM with two specific properties: a cross-sectional equilibrium distribution defined by an exponential-family random graph model (ERGM) for the network structure, and geometric tie duration distributions defined by constant hazards for tie dissolution. In this paper we focus on approaches for improving the behavior of the Carnegie et al. approximation and increasing its scope of application. We begin with Carnegie et al.'s observation that the exact result is tractable when the ERGM is dyad-independent, and then show that taking the sparse limit of the exact result leads to a different approximation than the one they presented. We show that the new approximation outperforms theirs for sparse, dyad-independent models, and observe that the errors tend to increase with the strength of dependence for dyad-dependent models. We then develop theoretical results in the dyad-dependent case, showing that when the ERGM is allowed to have arbitrary dyad-dependent terms and some dyad-dependent constraints, both the old and new approximations are asymptotically exact as the size of the STERGM time step goes to zero. We note that the continuous-time limit of the discrete-time approximations has the desired cross-sectional equilibrium distribution and exponential tie duration distributions with the desired means. We show that our results extend to hypergraphs, and we propose an extension of the Carnegie et al. framework to dissolution hazards that depend on tie age.
时间指数族随机图模型(TERGMs)是一类灵活的模型,用于研究随时间变化的网络关系。可分离TERGMs(STERGMs)是TERGMs的一个子类,其中关系形成和消解的动态过程可以在每个离散时间步内分离,并且可能取决于不同因素。卡内基等人(2015年)的近似方法提高了一类STERGMs的估计效率,使其能够从成本较低的横断面研究设计中可靠地估计出来。这种近似方法通过尝试构建具有两个特定属性的STERGM来适应横断面数据:一个由网络结构的指数族随机图模型(ERGM)定义的横断面平衡分布,以及由关系消解的恒定风险定义的几何关系持续时间分布。在本文中,我们专注于改进卡内基等人近似方法的性能并扩大其应用范围的方法。我们首先从卡内基等人的观察结果出发,即当ERGM与二元组无关时,精确结果是易于处理的,然后表明对精确结果取稀疏极限会导致与他们提出的近似方法不同的近似方法。我们表明,对于稀疏、与二元组无关的模型,新的近似方法优于他们的方法,并且观察到对于与二元组相关的模型,误差往往会随着依赖强度的增加而增大。然后,我们在与二元组相关的情况下得出理论结果,表明当允许ERGM具有任意与二元组相关的项和一些与二元组相关的约束时,随着STERGM时间步长的大小趋于零,旧的和新的近似方法都是渐近精确的。我们注意到离散时间近似方法的连续时间极限具有所需的横断面平衡分布和具有所需均值的指数关系持续时间分布。我们表明我们的结果可以扩展到超图,并且我们提出了对卡内基等人框架的扩展,以处理依赖关系年龄的消解风险。