Autophagy. 2013 Dec;9(12):1996-2008. doi: 10.4161/auto.26094.
How cellular metabolic activities regulate autophagy and determine the susceptibility to oxidative stress and ultimately cell death in neuronal cells is not well understood. An important example of oxidative stress is 4-hydroxynonenal (HNE), which is a lipid peroxidation product that is formed during oxidative stress, and accumulates in neurodegenerative diseases causing damage. The accumulation of toxic oxidation products such as HNE, is a prevalent feature of neurodegenerative diseases, and can promote organelle and protein damage leading to induction of autophagy. In this study, we used differentiated SH-SY5Y neuroblastoma cells to investigate the mechanisms and regulation of cellular susceptibility to HNE toxicity and the relationship to cellular metabolism. We found that autophagy is immediately stimulated by HNE at a sublethal concentration. Within the same time frame, HNE induces concentration dependent CASP3/caspase 3 activation and cell death. Interestingly, both basal and HNE-activated autophagy, were regulated by glucose metabolism. Inhibition of glucose metabolism by 2-deoxyglucose (2DG), at a concentration that inhibited autophagic flux, further exacerbated CASP3 activation and cell death in response to HNE. Cell death was attenuated by the pan-caspase inhibitor Z-VAD-FMK. Specific inhibition of glycolysis using koningic acid, a GAPDH inhibitor, inhibited autophagic flux and exacerbated HNE-induced cell death similarly to 2DG. The effects of 2DG on autophagy and HNE-induced cell death could not be reversed by addition of mannose, suggesting an ER stress-independent mechanism. 2DG decreased LAMP1 and increased BCL2 levels suggesting that its effects on autophagy may be mediated by more than one mechanism. Furthermore, 2DG decreased cellular ATP, and 2DG and HNE combined treatment decreased mitochondrial membrane potential. We conclude that glucose-dependent autophagy serves as a protective mechanism in response to HNE.
细胞代谢活动如何调节自噬,以及如何决定神经元细胞对氧化应激的敏感性,最终导致细胞死亡,目前还不是很清楚。氧化应激的一个重要例子是 4-羟基壬烯醛(HNE),它是氧化应激过程中形成的脂质过氧化产物,在神经退行性疾病中积累,造成损伤。HNE 等有毒氧化产物的积累是神经退行性疾病的一个普遍特征,可促进细胞器和蛋白质损伤,从而诱导自噬。在这项研究中,我们使用分化的 SH-SY5Y 神经母细胞瘤细胞来研究细胞对 HNE 毒性的敏感性的机制和调节以及与细胞代谢的关系。我们发现,亚致死浓度的 HNE 能立即刺激自噬。在同一时间范围内,HNE 诱导浓度依赖性 CASP3/半胱天冬酶 3 激活和细胞死亡。有趣的是,基础和 HNE 激活的自噬都受到葡萄糖代谢的调节。在抑制自噬流的浓度下,用 2-脱氧葡萄糖(2DG)抑制葡萄糖代谢,进一步加剧了 HNE 对细胞死亡的反应中的 CASP3 激活和细胞死亡。用 pan-caspase 抑制剂 Z-VAD-FMK 可以减轻细胞死亡。用 GAPDH 抑制剂 koningic acid 特异性抑制糖酵解,抑制自噬流并加剧 HNE 诱导的细胞死亡,与 2DG 相似。2DG 对自噬和 HNE 诱导的细胞死亡的影响不能通过添加 mannose 逆转,表明这是一种不依赖内质网应激的机制。2DG 降低了 LAMP1 的水平,增加了 BCL2 的水平,这表明其对自噬的影响可能是通过不止一种机制介导的。此外,2DG 降低了细胞内的 ATP 水平,2DG 和 HNE 联合处理降低了线粒体膜电位。我们的结论是,葡萄糖依赖的自噬是对 HNE 反应的一种保护机制。