Bourke Justin L, Coleman Harold A, Pham Vi, Forsythe John S, Parkington Helena C
1 Department of Physiology, Monash University , Clayton, Victoria, Australia .
Tissue Eng Part A. 2014 Mar;20(5-6):1089-95. doi: 10.1089/ten.TEA.2013.0295. Epub 2013 Dec 11.
Modeling of cellular environments with nanofabricated biomaterial scaffolds has the potential to improve the growth and functional development of cultured cellular models, as well as assist in tissue engineering efforts. An understanding of how such substrates may alter cellular function is critical. Highly plastic central nervous system hippocampal cells and non-network forming peripheral nervous system dorsal root ganglion (DRG) cells from embryonic rats were cultured upon laminin-coated degradable polycaprolactone (PCL) and nondegradable polystyrene (PS) electrospun nanofibrous scaffolds with fiber diameters similar to those of neuronal processes. The two cell types displayed intrinsically different growth patterns on the nanofibrous scaffolds. Hippocampal neurites grew both parallel and perpendicular to the nanofibers, a property that would increase neurite-to-neurite contacts and maximize potential synapse development, essential for extensive network formation in a highly plastic cell type. In contrast, non-network-forming DRG neurons grew neurites exclusively along fibers, recapitulating the simple direct unbranching pathway between sensory ending and synapse in the spinal cord that occurs in vivo. In addition, the two primary neuronal types showed different functional capacities under patch clamp testing. The substrate composition did not alter the neuronal functional development, supporting electrospun PCL and PS as candidate materials for controlled cellular environments in culture and electrospun PCL for directed neurite outgrowth in tissue engineering applications.
用纳米制造的生物材料支架对细胞环境进行建模,有潜力改善培养的细胞模型的生长和功能发育,并有助于组织工程研究。了解此类基质如何改变细胞功能至关重要。将来自胚胎大鼠的高度可塑性的中枢神经系统海马细胞和不形成网络的外周神经系统背根神经节(DRG)细胞培养在涂有层粘连蛋白的可降解聚己内酯(PCL)和不可降解的聚苯乙烯(PS)电纺纳米纤维支架上,这些支架的纤维直径与神经元突起的直径相似。这两种细胞类型在纳米纤维支架上表现出本质上不同的生长模式。海马神经突平行和垂直于纳米纤维生长,这种特性会增加神经突与神经突的接触,并使潜在的突触发育最大化,这对于高度可塑性细胞类型中广泛的网络形成至关重要。相比之下,不形成网络的DRG神经元的神经突仅沿着纤维生长,重现了体内发生的感觉末梢与脊髓突触之间简单的直接无分支途径。此外,在膜片钳测试中,这两种主要神经元类型表现出不同的功能能力。基质组成并未改变神经元的功能发育,支持将电纺PCL和PS作为培养中可控细胞环境的候选材料,以及将电纺PCL用于组织工程应用中定向神经突生长。