School of Chemical Science and Engineering, KTH Royal Institute of Technology , Stockholm, Sweden.
ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30318-30328. doi: 10.1021/acsami.7b06742. Epub 2017 Aug 31.
Understanding and controlling the interactions occurring between cells and engineered materials are central challenges toward progress in the development of biomedical devices. In this work, we describe materials for direct ink writing (DIW), an extrusion-based type of 3D printing, that embed a custom synthetic protein (RGD-PDL) within the microfilaments of 3D-hydrogel scaffolds to modify these interactions and differentially direct tissue-level organization of complex cell populations in vitro. The RGD-PDL is synthesized by modifying poly-d-lysine (PDL) to varying extents with peptides containing the integrin-binding motif Arg-Gly-Asp (RGD). Compositional gradients of the RGD-PDL presented by both patterned and thin-film poly(2-hydroxyethyl) methacrylate (pHEMA) substrates allow the patterning of cell-growth compliance in a grayscale form. The surface chemistry-dependent guidance of cell growth on the RGD-PDL-modified pHEMA materials is demonstrated using a model NIH-3T3 fibroblast cell line. The formation of a more complex cellular system-organotypic primary murine dorsal root ganglion (DRG)-in culture is also achieved on these scaffolds, where distinctive forms of cell growth and migration guidance are seen depending on their RGD-PDL content and topography. This experimental platform for the study of physicochemical factors on the formation and the reorganization of organotypic cultures offers useful capabilities for studies in tissue engineering, regenerative medicine, and diagnostics.
理解和控制细胞与工程材料之间发生的相互作用是生物医学设备发展的核心挑战。在这项工作中,我们描述了用于直接墨水书写(DIW)的材料,这是一种基于挤出的 3D 打印类型,它将定制的合成蛋白(RGD-PDL)嵌入 3D 水凝胶支架的微丝中,以改变这些相互作用,并在体外以不同的方式指导复杂细胞群体的组织水平组织。RGD-PDL 通过不同程度地修饰聚-d-赖氨酸(PDL)与含有整合素结合基序 Arg-Gly-Asp(RGD)的肽合成。图案化和薄膜聚(2-羟乙基)甲基丙烯酸酯(pHEMA)基质呈现的 RGD-PDL 组成梯度允许以灰度形式对细胞生长顺应性进行图案化。使用 NIH-3T3 成纤维细胞系证明了 RGD-PDL 修饰的 pHEMA 材料表面化学依赖性的细胞生长导向。在这些支架上还实现了更复杂的细胞系统-器官型原代小鼠背根神经节(DRG)-体外培养,根据其 RGD-PDL 含量和形貌观察到不同形式的细胞生长和迁移导向。这种用于研究物理化学因素对器官型培养物形成和重组的实验平台为组织工程、再生医学和诊断学的研究提供了有用的功能。