Department of Pharmacology & Toxicology, The University of Texas Medical Branch , 3.330 Basic Science Building, 301 University Boulevard, Galveston, Texas 77555, United States.
Biochemistry. 2013 Nov 26;52(47):8590-8. doi: 10.1021/bi400980c. Epub 2013 Nov 11.
Inflammation-mediated reactive molecules can result in an array of oxidized and halogenated DNA-damage products, including 5-chlorocytosine ((Cl)C). Previous studies have shown that (Cl)C can mimic 5-methylcytosine ((m)C) and act as a fraudulent epigenetic signal, promoting the methylation of previously unmethylated DNA sequences. Although the 5-halouracils are good substrates for base-excision repair, no repair activity has yet been identified for (Cl)C. Because of the apparent biochemical similarities of (m)C and (Cl)C, we have investigated the effects of (m)C and (Cl)C substitution on oligonucleotide structure and dynamics. In this study, we have constructed oligonucleotide duplexes containing C, (Cl)C, and (m)C within a CpG dinucleotide. The thermal and thermodynamic stability of these duplexes were found to be experimentally indistinguishable. Crystallographic structures of duplex oligonucleotides containing (m)C or (Cl)C were determined to 1.2 and 1.9 Å resolution, respectively. Both duplexes are B-form and are superimposable on a previously determined structure of a cytosine-containing duplex with a rmsd of approximately 0.25 Å. NMR solution studies indicate that all duplexes containing cytosine or the cytosine analogues are normal B-form and that no structural perturbations are observed surrounding the site of each substitution. The magnitude of the base-stacking-induced upfield shifts for nonexchangeable base proton resonances are similar for each of the duplexes examined, indicating that neither (m)C nor (Cl)C significantly alter base-stacking interactions. The (Cl)C analogue is paired with G in an apparently normal geometry; however, the G-imino proton of the (Cl)C-G base pair resonates to higher field relative to (m)C-G or C-G, indicating a weaker imino hydrogen bond. Using selective ¹⁵N-enrichment and isotope-edited NMR, we observe that the amino group of (Cl)C rotates at roughly half of the rate of the corresponding amino groups of the C-G and (m)C-G base pairs. The altered chemical shifts of hydrogen-bonding proton resonances for the (Cl)C-G base pair as well as the slower rotation of the (Cl)C amino group can be attributed to the electron-withdrawing inductive property of the 5-chloro substituent. The apparent similarity of duplexes containing (m)C and (Cl)C demonstrated here is in accord with results of previous biochemical studies and further suggests that (Cl)C is likely to be an unusually persistent form of DNA damage.
炎症介导的反应性分子可导致多种氧化和卤化的 DNA 损伤产物,包括 5-氯胞嘧啶 ((Cl)C)。先前的研究表明,(Cl)C 可以模拟 5-甲基胞嘧啶 ((m)C),并充当欺诈性的表观遗传信号,促进先前未甲基化的 DNA 序列的甲基化。尽管 5-卤尿嘧啶是碱基切除修复的良好底物,但尚未鉴定出 (Cl)C 的修复活性。由于 (m)C 和 (Cl)C 的明显生化相似性,我们研究了 (m)C 和 (Cl)C 取代对寡核苷酸结构和动力学的影响。在这项研究中,我们构建了含有 C、(Cl)C 和 CpG 二核苷酸内 (m)C 的寡核苷酸双链体。这些双链体的热稳定性和热力学稳定性在实验上无法区分。确定含有 (m)C 或 (Cl)C 的双链体的晶体结构分辨率分别为 1.2 和 1.9 Å。两个双链体均为 B 型,与先前确定的具有约 0.25 Å 的 rmsd 的含有胞嘧啶的双链体结构重叠。NMR 溶液研究表明,所有含有胞嘧啶或胞嘧啶类似物的双链体均为正常的 B 型,并且在每个取代部位均未观察到结构扰动。对于每个检查的双链体,非交换碱基质子共振的碱基堆积诱导的向上场位移的幅度相似,表明 (m)C 或 (Cl)C 均不会显著改变碱基堆积相互作用。(Cl)C 类似物与 G 以明显正常的几何形状配对;然而,(Cl)C-G 碱基对的 G-亚氨基质子的共振场高于 (m)C-G 或 C-G,表明亚氨基氢键较弱。使用选择性 ¹⁵N 富集和同位素编辑 NMR,我们观察到 (Cl)C-G 碱基对的氨基基团的旋转速度大约是 C-G 和 (m)C-G 碱基对的氨基基团的旋转速度的一半。(Cl)C-G 碱基对的氢键质子共振的化学位移变化以及 (Cl)C 氨基基团的较慢旋转归因于 5-氯取代基的吸电子诱导性质。这里显示的含有 (m)C 和 (Cl)C 的双链体的明显相似性与先前的生化研究结果一致,并进一步表明 (Cl)C 可能是一种异常持久的 DNA 损伤形式。