Suppr超能文献

在大肠杆菌完全重组的脂肪酸生物合成途径中,不饱和脂肪酸和饱和脂肪酸之间的代谢通量由 FabA:FabB 比值控制。

Metabolic flux between unsaturated and saturated fatty acids is controlled by the FabA:FabB ratio in the fully reconstituted fatty acid biosynthetic pathway of Escherichia coli.

机构信息

Department of Chemistry and ‡Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States.

出版信息

Biochemistry. 2013 Nov 19;52(46):8304-12. doi: 10.1021/bi401116n. Epub 2013 Nov 4.

Abstract

The entire fatty acid biosynthetic pathway of Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from 14 purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H to the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multienzyme system. At steady state, a maximal turnover rate of 0.5 s(-1) was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. Via changes in these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximal turnover rate of the pathway. Our reconstituted system provides a powerful tool for understanding and engineering rate-limiting and regulatory steps in this complex and practically significant metabolic pathway.

摘要

大肠杆菌的整个脂肪酸生物合成途径,从乙酰辅酶 A 羧化酶开始,已经从 14 种纯化的蛋白成分在体外重新构建。示踪剂分析验证了乙酰辅酶 A 和 NAD(P)H 到游离脂肪酸产物的化学计量转化,允许对这个多酶系统进行简单的分光光度法动力学分析。在稳态下,达到了 0.5 s(-1)的最大周转率。在最佳的周转率条件下,主要产物是 C16 和 C18 饱和以及单不饱和脂肪酸。重组系统使我们能够定量研究影响不饱和与饱和脂肪酸代谢通量的因素。特别是,脱水酶 FabA 和β-酮酰基合酶 FabB 的浓度对于控制这种特性至关重要。通过改变这些变量,可以在不显著影响途径最大周转率的情况下,将不饱和脂肪酸的产生百分比调整为 10%至 50%。我们的重组系统为理解和工程这个复杂且具有实际意义的代谢途径中的限速和调节步骤提供了一个强大的工具。

相似文献

2
Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters.
Mol Microbiol. 2011 Apr;80(1):195-218. doi: 10.1111/j.1365-2958.2011.07564.x. Epub 2011 Feb 21.
3
Transcriptional regulation of membrane lipid homeostasis in Escherichia coli.
J Biol Chem. 2009 Dec 11;284(50):34880-8. doi: 10.1074/jbc.M109.068239. Epub 2009 Oct 23.
4
Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes.
Appl Microbiol Biotechnol. 2010 Jun;87(1):271-80. doi: 10.1007/s00253-009-2377-x. Epub 2010 Feb 5.
8
Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis.
J Bacteriol. 2016 Oct 21;198(22):3060-3069. doi: 10.1128/JB.00463-16. Print 2016 Nov 15.

引用本文的文献

4
A synthetic cell-free 36-enzyme reaction system for vitamin B production.
Nat Commun. 2023 Aug 24;14(1):5177. doi: 10.1038/s41467-023-40932-4.
5
Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli.
Metab Eng. 2023 May;77:118-127. doi: 10.1016/j.ymben.2023.03.008. Epub 2023 Mar 22.
6
Control of Unsaturation in Fatty Acid Biosynthesis by FabA.
Biochemistry. 2022 Apr 5;61(7):608-615. doi: 10.1021/acs.biochem.2c00094. Epub 2022 Mar 8.
7
Kinetically guided, ratiometric tuning of fatty acid biosynthesis.
Metab Eng. 2022 Jan;69:209-220. doi: 10.1016/j.ymben.2021.11.008. Epub 2021 Nov 23.
8
A kinetic rationale for functional redundancy in fatty acid biosynthesis.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23557-23564. doi: 10.1073/pnas.2013924117. Epub 2020 Sep 3.
9
Tunable Enzymatic Synthesis of the Immunomodulator Lipid IV To Enable Structure-Activity Analysis.
J Am Chem Soc. 2019 Jun 19;141(24):9474-9478. doi: 10.1021/jacs.9b03066. Epub 2019 Jun 11.
10
Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer.
ACS Omega. 2019 Mar 31;4(3):5293-5303. doi: 10.1021/acsomega.8b02955. Epub 2019 Mar 13.

本文引用的文献

1
Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage.
Microbiology (Reading). 2012 May;158(Pt 5):1279-1283. doi: 10.1099/mic.0.056903-0. Epub 2012 Feb 16.
2
In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18643-8. doi: 10.1073/pnas.1110852108. Epub 2011 Oct 31.
3
Quantitative analysis and engineering of fatty acid biosynthesis in E. coli.
Metab Eng. 2010 Jul;12(4):378-86. doi: 10.1016/j.ymben.2010.02.003. Epub 2010 Feb 23.
5
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Nat Chem Biol. 2009 Aug;5(8):593-9. doi: 10.1038/nchembio.186. Epub 2009 Jun 28.
6
Influence of fatty acid composition of raw materials on biodiesel properties.
Bioresour Technol. 2009 Jan;100(1):261-8. doi: 10.1016/j.biortech.2008.06.039. Epub 2008 Aug 9.
7
In-frame deletion of Escherichia coli essential genes in complex regulon.
Biotechniques. 2008 Feb;44(2):209-10, 212-5. doi: 10.2144/000112687.
8
The biotin regulatory system: kinetic control of a transcriptional switch.
Biochemistry. 2006 May 23;45(20):6417-25. doi: 10.1021/bi052599r.
9
The structural biology of type II fatty acid biosynthesis.
Annu Rev Biochem. 2005;74:791-831. doi: 10.1146/annurev.biochem.74.082803.133524.
10
Control of membrane lipid fluidity by molecular thermosensors.
J Bacteriol. 2004 Oct;186(20):6681-8. doi: 10.1128/JB.186.20.6681-6688.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验