Suppr超能文献

易于制备各向异性 DNA 功能化金纳米粒子及其区域选择性组装。

Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

J Am Chem Soc. 2013 Nov 27;135(47):17675-8. doi: 10.1021/ja408033e. Epub 2013 Nov 18.

Abstract

Anisotropic nanoparticles can provide considerable opportunities for assembly of nanomaterials with unique structures and properties. However, most reported anisotropic nanoparticles are either difficult to prepare or to functionalize. Here we report a facile one-step solution-based method to prepare anisotropic DNA-functionalized gold nanoparticles (a-DNA-AuNP) with 96% yield and with high DNA density (120 ± 20 strands on the gold hemisphere). The method is based on the competition between a thiolated hydrophilic DNA and a thiolated hydrophobic phospholipid and has been applied to prepare a-DNA-AuNPs of different sizes and with a variety of DNA sequences. In addition, DNA strands on the a-DNA-AuNPs can be exchanged with other DNA strands with a different sequence. The anisotropic nature of the a-DNA-AuNPs allows regioselective hetero- and homonuclear assembly with high monodispersity, as well as regioselective functionalization of two different DNA strands for more diverse applications.

摘要

各向异性纳米粒子可为组装具有独特结构和性能的纳米材料提供重要机会。然而,大多数已报道的各向异性纳米粒子要么难以制备,要么难以功能化。在此,我们报告了一种简便的一步溶液法,以 96%的产率和高 DNA 密度(金半球上有 120 ± 20 条 DNA 链)制备各向异性 DNA 功能化金纳米粒子(a-DNA-AuNP)。该方法基于巯基化亲水性 DNA 和巯基化疏水性磷脂之间的竞争,并已应用于制备不同尺寸和具有多种 DNA 序列的 a-DNA-AuNPs。此外,a-DNA-AuNPs 上的 DNA 链可以与其他具有不同序列的 DNA 链进行交换。a-DNA-AuNPs 的各向异性使其能够以高单分散性进行区域选择性异核和同核组装,以及对两条不同 DNA 链进行区域选择性功能化,以实现更多样化的应用。

相似文献

1
Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly.
J Am Chem Soc. 2013 Nov 27;135(47):17675-8. doi: 10.1021/ja408033e. Epub 2013 Nov 18.
4
Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.
ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16800-7. doi: 10.1021/am504139d. Epub 2014 Sep 19.
5
Facile and rapid manipulation of DNA surface density on gold nanoparticles using mononucleotide-mediated conjugation.
Chem Commun (Camb). 2010 Feb 28;46(8):1314-6. doi: 10.1039/b920696e. Epub 2010 Jan 15.
7
A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
Chem Commun (Camb). 2013 Mar 28;49(25):2533-5. doi: 10.1039/c3cc39093d.
8
DNA Base Pair Stacking Assembly of Anisotropic Nanoparticles for Biosensing and Ordered Assembly.
Anal Sci. 2021 Mar 10;37(3):415-419. doi: 10.2116/analsci.20SCR02. Epub 2020 Oct 16.
9
DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy.
Analyst. 2013 Sep 7;138(17):4941-9. doi: 10.1039/c3an00683b. Epub 2013 Jun 24.
10
An analytical method to control the surface density and stability of DNA-gold nanoparticles for an optimized biosensor.
Colloids Surf B Biointerfaces. 2020 Mar;187:110650. doi: 10.1016/j.colsurfb.2019.110650. Epub 2019 Nov 23.

引用本文的文献

1
Heterodimers of metal nanoparticles: synthesis, properties, and biological applications.
Mikrochim Acta. 2021 Sep 19;188(10):345. doi: 10.1007/s00604-021-05002-w.
3
Light-Mediated Directed Placement of Different DNA Sequences on Single Gold Nanoparticles.
J Am Chem Soc. 2021 Mar 17;143(10):3671-3676. doi: 10.1021/jacs.0c11699. Epub 2021 Mar 4.
4
Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS.
Nanomaterials (Basel). 2020 May 14;10(5):942. doi: 10.3390/nano10050942.
5
DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns.
Nat Chem. 2018 Feb;10(2):184-192. doi: 10.1038/nchem.2893. Epub 2017 Dec 4.
6
Bottom-Up Strategy To Prepare Nanoparticles with a Single DNA Strand.
J Am Chem Soc. 2017 Mar 15;139(10):3623-3626. doi: 10.1021/jacs.7b00065. Epub 2017 Mar 6.
7
Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles.
Nat Chem. 2016 Feb;8(2):162-70. doi: 10.1038/nchem.2420. Epub 2016 Jan 4.
8
DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles.
Acc Chem Res. 2014 Jun 17;47(6):1881-90. doi: 10.1021/ar500081k. Epub 2014 May 28.
9
Biomimetic RNA-silencing nanocomplexes: overcoming multidrug resistance in cancer cells.
Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1997-2001. doi: 10.1002/anie.201309985. Epub 2014 Jan 20.

本文引用的文献

1
Janus particles.
Soft Matter. 2008 Mar 20;4(4):663-668. doi: 10.1039/b718131k.
2
DNA-Based Assembly of Gold Nanocrystals.
Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1808-1812. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1808::AID-ANIE1808>3.0.CO;2-C.
3
Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties.
J Phys Chem Lett. 2013 Feb 21;4(4):641-7. doi: 10.1021/jz400045s. Epub 2013 Feb 7.
4
Functional DNA directed assembly of nanomaterials for biosensing.
J Mater Chem. 2009 Apr 7;19(13). doi: 10.1039/B813939C.
5
Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating.
Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10344-8. doi: 10.1002/anie.201304364. Epub 2013 Aug 12.
6
Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
ACS Nano. 2013 Aug 27;7(8):6636-48. doi: 10.1021/nn401775e. Epub 2013 Jun 17.
7
Exploiting core-shell synergy for nanosynthesis and mechanistic investigation.
Acc Chem Res. 2013 Jul 16;46(7):1636-46. doi: 10.1021/ar400020j. Epub 2013 Apr 24.
8
Janus particles: synthesis, self-assembly, physical properties, and applications.
Chem Rev. 2013 Jul 10;113(7):5194-261. doi: 10.1021/cr300089t. Epub 2013 Apr 4.
9
Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability.
Chem Soc Rev. 2013 Apr 7;42(7):3114-26. doi: 10.1039/c3cs35460a.
10
Tuning and assembling metal nanostructures with DNA.
Chem Commun (Camb). 2013 Apr 4;49(26):2597-609. doi: 10.1039/c2cc37536b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验