Suppr超能文献

高维随机反应网络中的加速灵敏度分析

Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

作者信息

Arampatzis Georgios, Katsoulakis Markos A, Pantazis Yannis

机构信息

Dep. of Mathematics and Statistics, University of Massachusetts, Amherst, MA, United States of America.

出版信息

PLoS One. 2015 Jul 10;10(7):e0130825. doi: 10.1371/journal.pone.0130825. eCollection 2015.

Abstract

Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the number of the sensitive parameters.

摘要

现有的灵敏度分析方法无法有效处理具有大量参数和物种的随机反应网络,而这种网络在复杂生化现象的建模与模拟中很常见。本文提出了一种针对此类系统的参数灵敏度分析的两步策略,利用了最近提出的两种用于随机动力学的灵敏度分析方法的优势与协同作用。第一种方法通过费舍尔信息矩阵对轨迹的基础分布进行随机动力学的灵敏度分析;第二种方法是一种基于随机耦合技术以降低方差的、有限差分的梯度型灵敏度方法。在此,我们证明这两种方法可以通过一种新的灵敏度界结合并一起应用,该界纳入了感兴趣量的方差以及从第一种方法估计得到的费舍尔信息矩阵。所提出策略的第一步使用该界标记灵敏度,并以可控方式筛选出不敏感参数。在所提出策略的第二步中,仅对在第一步中未被筛选出的(潜在)敏感参数应用有限差分法进行灵敏度估计。在一个具有五十个参数的表皮生长因子网络和一个具有八十个参数的蛋白质稳态网络上的结果表明,所提出的策略能够快速发现并舍弃不敏感参数,并且在剩余的潜在敏感参数中准确估计灵敏度。新的灵敏度策略可能比当前测试所有参数的最先进方法快几倍,特别是在“松散”系统中。具体而言,计算加速由参数总数与敏感参数数量的比值来量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4764/4498611/6b2a2b9b6c6b/pone.0130825.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验