Suppr超能文献

高效计算离散随机化学反应网络的参数敏感性。

Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

机构信息

Department of Mathematics and Statistics, University of Maryland, Baltimore County 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.

出版信息

J Chem Phys. 2010 Jan 21;132(3):034103. doi: 10.1063/1.3280166.

Abstract

Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

摘要

生化网络的参数灵敏度是研究系统鲁棒性特性、估计网络参数和确定药物治疗靶点的不可或缺的工具。对于常用蒙特卡罗方法进行离散随机表示的生化网络,灵敏度分析可能特别具有挑战性,因为对于参数的名义值和扰动值,准确的有限差分灵敏度计算需要大量的模拟。在本文中,我们引入了常用随机数 (CRN) 方法与 Gillespie 的随机模拟算法相结合,该方法利用 CRN 对名义参数和扰动参数进行正相关。我们还提出了一种新的方法,称为常用反应路径 (CRP) 方法,该方法使用 CRN 与 Kurtz 提出的离散状态马尔可夫过程的随机时间变化表示相结合,通过应用于在这种表示中自然出现的耦合反应路径的有限差分近似来估计灵敏度。虽然这两种方法与独立随机数有限差分实现相比,显著降低了估计量的方差,但数值证据表明 CRP 方法实现了更大的方差减少。我们还为 CRP 的优异性能提供了一些理论依据。这些方法的改进准确性允许更有效地进行灵敏度估计。在本文中报告的两个示例系统中,展示了超过 300 倍和 10,000 倍的加速因子。

相似文献

3
An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems.
Biosystems. 2017 Jan;151:43-52. doi: 10.1016/j.biosystems.2016.11.006. Epub 2016 Nov 30.
5
An efficient and unbiased method for sensitivity analysis of stochastic reaction networks.
J R Soc Interface. 2014 Dec 6;11(101):20140979. doi: 10.1098/rsif.2014.0979.
6
Sensitivity Analysis for Multiscale Stochastic Reaction Networks Using Hybrid Approximations.
Bull Math Biol. 2019 Aug;81(8):3121-3158. doi: 10.1007/s11538-018-0521-4. Epub 2018 Oct 9.
8
Exact Variance-Reduced Simulation of Lattice Continuous-Time Markov Chains with Applications in Reaction Networks.
Bull Math Biol. 2019 Aug;81(8):3159-3184. doi: 10.1007/s11538-019-00576-2. Epub 2019 Feb 13.
9
Selected-node stochastic simulation algorithm.
J Chem Phys. 2018 Apr 28;148(16):164108. doi: 10.1063/1.5021242.

引用本文的文献

2
A modified motor-clutch model reveals that neuronal growth cones respond faster to soft substrates.
Mol Biol Cell. 2024 Apr 1;35(4):ar47. doi: 10.1091/mbc.E23-09-0364. Epub 2024 Feb 14.
3
Quantifying Parameter Interdependence in Stochastic Discrete Models of Biochemical Systems.
Entropy (Basel). 2023 Aug 5;25(8):1168. doi: 10.3390/e25081168.
4
DeepCME: A deep learning framework for computing solution statistics of the chemical master equation.
PLoS Comput Biol. 2021 Dec 8;17(12):e1009623. doi: 10.1371/journal.pcbi.1009623. eCollection 2021 Dec.
6
An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.
Mol Cell. 2018 May 17;70(4):745-756.e6. doi: 10.1016/j.molcel.2018.04.012.
7
Ranking of Reactions Based on Sensitivity of Protein Noise Depends on the Choice of Noise Measure.
PLoS One. 2015 Dec 1;10(12):e0143867. doi: 10.1371/journal.pone.0143867. eCollection 2015.
8
Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.
PLoS One. 2015 Jul 10;10(7):e0130825. doi: 10.1371/journal.pone.0130825. eCollection 2015.
9
Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics.
J Comput Neurosci. 2015 Feb;38(1):67-82. doi: 10.1007/s10827-014-0528-2. Epub 2014 Nov 19.
10
An efficient and unbiased method for sensitivity analysis of stochastic reaction networks.
J R Soc Interface. 2014 Dec 6;11(101):20140979. doi: 10.1098/rsif.2014.0979.

本文引用的文献

2
Spectral methods for parametric sensitivity in stochastic dynamical systems.
Biophys J. 2007 Jan 15;92(2):379-93. doi: 10.1529/biophysj.106.085084. Epub 2006 Nov 3.
3
The finite state projection algorithm for the solution of the chemical master equation.
J Chem Phys. 2006 Jan 28;124(4):044104. doi: 10.1063/1.2145882.
4
Sensitivity analysis of discrete stochastic systems.
Biophys J. 2005 Apr;88(4):2530-40. doi: 10.1529/biophysj.104.053405. Epub 2005 Feb 4.
5
Mechanisms of noise-resistance in genetic oscillators.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5988-92. doi: 10.1073/pnas.092133899. Epub 2002 Apr 23.
6
Intrinsic noise in gene regulatory networks.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9. doi: 10.1073/pnas.151588598. Epub 2001 Jul 3.
7
Construction of a genetic toggle switch in Escherichia coli.
Nature. 2000 Jan 20;403(6767):339-42. doi: 10.1038/35002131.
8
Emergent properties of networks of biological signaling pathways.
Science. 1999 Jan 15;283(5400):381-7. doi: 10.1126/science.283.5400.381.
9
Stochastic mechanisms in gene expression.
Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):814-9. doi: 10.1073/pnas.94.3.814.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验