Department of Mathematics and Statistics, University of Maryland, Baltimore County 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
J Chem Phys. 2010 Jan 21;132(3):034103. doi: 10.1063/1.3280166.
Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.
生化网络的参数灵敏度是研究系统鲁棒性特性、估计网络参数和确定药物治疗靶点的不可或缺的工具。对于常用蒙特卡罗方法进行离散随机表示的生化网络,灵敏度分析可能特别具有挑战性,因为对于参数的名义值和扰动值,准确的有限差分灵敏度计算需要大量的模拟。在本文中,我们引入了常用随机数 (CRN) 方法与 Gillespie 的随机模拟算法相结合,该方法利用 CRN 对名义参数和扰动参数进行正相关。我们还提出了一种新的方法,称为常用反应路径 (CRP) 方法,该方法使用 CRN 与 Kurtz 提出的离散状态马尔可夫过程的随机时间变化表示相结合,通过应用于在这种表示中自然出现的耦合反应路径的有限差分近似来估计灵敏度。虽然这两种方法与独立随机数有限差分实现相比,显著降低了估计量的方差,但数值证据表明 CRP 方法实现了更大的方差减少。我们还为 CRP 的优异性能提供了一些理论依据。这些方法的改进准确性允许更有效地进行灵敏度估计。在本文中报告的两个示例系统中,展示了超过 300 倍和 10,000 倍的加速因子。