Suppr超能文献

无需进一步学习即可提高预测估计:峰值转移效应。

Increasing predictive estimations without further learning: the peak-shift effect.

作者信息

Struyf Dieter, Iberico Carlos, Vervliet Bram

机构信息

University of Leuven, <location>Belgium</location>

Pontifical Catholic University of Peru, <location>Lima, Peru</location>

出版信息

Exp Psychol. 2014;61(2):134-41. doi: 10.1027/1618-3169/a000233.

Abstract

The peak of learned responding normally occurs at the learning stimulus itself, but can shift to a different stimulus after discriminative learning. This provides important information about the nature of the generalization mechanism, and reveals alternative pathways through which learned responses can increase. Over two experiments, we established the peak-shift effect in a human predictive learning paradigm. Participants were asked to predict the occurrence of a neutral outcome (drawing of a lightning bolt) based on preceding geometrical figures (rings of different sizes). During learning, the middle-sized ring was sometimes followed by the outcome, whereas a larger ring was never followed by the outcome. At test, we presented larger and smaller rings (Experiment 1), or only a slightly smaller ring (Experiment 2). We consistently observed highest prediction of the outcome to the slightly smaller ring. Predictive estimations in humans can reach their height to stimuli that have never actually participated in the learning experiences. We argue that the results are most in line with an associative learning account, rather than an adaptation-level or a rule-learning account.

摘要

习得反应的峰值通常出现在学习刺激本身,但在辨别学习后可能会转移到不同的刺激上。这提供了关于泛化机制本质的重要信息,并揭示了习得反应增加的替代途径。通过两个实验,我们在人类预测学习范式中建立了峰值转移效应。参与者被要求根据之前的几何图形(不同大小的圆环)预测一个中性结果(闪电的图片)的出现。在学习过程中,中等大小的圆环有时会跟随着结果出现,而较大的圆环则从未跟随着结果出现。在测试中,我们呈现了更大和更小的圆环(实验1),或者只呈现了一个稍小的圆环(实验2)。我们始终观察到对稍小圆环的结果预测最高。人类的预测估计可以在从未实际参与过学习体验的刺激上达到峰值。我们认为,这些结果最符合联想学习理论,而不是适应水平理论或规则学习理论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验