Suppr超能文献

局部沿海马的隔颞轴产生和传播涟漪。

Local generation and propagation of ripples along the septotemporal axis of the hippocampus.

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York 10016, Physics Department, California Institute of Technology, Pasadena, California 91125, and Department of Physiology, University of Szeged, Szeged H-6720, Hungary.

出版信息

J Neurosci. 2013 Oct 23;33(43):17029-41. doi: 10.1523/JNEUROSCI.2036-13.2013.

Abstract

A topographical relationship exists between the septotemporal segments of the hippocampus and their entorhinal-neocortical targets, but the physiological organization of activity along the septotemporal axis is poorly understood. We recorded sharp-wave ripple patterns in rats during sleep from the entire septotemporal axis of the CA1 pyramidal layer. Qualitatively similar ripples emerged at all levels. From the local seed, ripples traveled septally or temporally at a speed of ∼0.35 m/s, and the spatial spread depended on ripple magnitude. Ripples propagated smoothly across the septal and intermediate segments of the hippocampus, but ripples in the temporal segment often remained isolated. These findings show that ripples can combine information from the septal and intermediate hippocampus and transfer integrated signals downstream. In contrast, ripples that emerged in the temporal pole broadcast largely independent information to their cortical and subcortical targets.

摘要

海马体的隔区-颞区片段与它们的内嗅皮质-新皮质靶区之间存在拓扑关系,但沿隔区-颞区轴的活动的生理组织尚不清楚。我们在大鼠睡眠期间从 CA1 锥体层的整个隔区-颞区记录到锐波涟漪模式。在所有水平上都出现了定性相似的涟漪。从局部种子开始,涟漪以约 0.35 m/s 的速度向隔区或颞区传播,空间传播取决于涟漪幅度。涟漪在隔区和海马体中间段平稳传播,但颞段的涟漪往往仍然是孤立的。这些发现表明,涟漪可以整合来自隔区和中间海马体的信息,并将整合后的信号向下游传递。相比之下,出现在颞极的涟漪向其皮质和皮质下靶区广播的是很大程度上独立的信息。

相似文献

1
Local generation and propagation of ripples along the septotemporal axis of the hippocampus.
J Neurosci. 2013 Oct 23;33(43):17029-41. doi: 10.1523/JNEUROSCI.2036-13.2013.
2
Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats.
Hippocampus. 2020 Sep;30(9):970-986. doi: 10.1002/hipo.23211. Epub 2020 May 9.
3
Traveling theta waves along the entire septotemporal axis of the hippocampus.
Neuron. 2012 Aug 9;75(3):410-7. doi: 10.1016/j.neuron.2012.07.015.
4
Septotemporal variation in dynamics of theta: speed and habituation.
J Neurophysiol. 2011 Jun;105(6):2675-86. doi: 10.1152/jn.00837.2010. Epub 2011 Mar 16.
6
Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
J Neurosci. 2016 Oct 12;36(41):10663-10672. doi: 10.1523/JNEUROSCI.1042-16.2016.
7
Theta and gamma coherence across the septotemporal axis during distinct behavioral states.
Hippocampus. 2012 May;22(5):1164-75. doi: 10.1002/hipo.20962. Epub 2011 Jul 11.
10
Awake hippocampal sharp-wave ripples support spatial memory.
Science. 2012 Jun 15;336(6087):1454-8. doi: 10.1126/science.1217230. Epub 2012 May 3.

引用本文的文献

1
Ripple contributions to human memory: making the spiking content count.
Nat Rev Neurosci. 2025 Sep 17. doi: 10.1038/s41583-025-00971-w.
2
Neurophysiological evidence of human hippocampal longitudinal differentiation in associative memory.
Nat Commun. 2025 Jul 25;16(1):6845. doi: 10.1038/s41467-025-61464-z.
3
Hippocampal and cortical high-frequency oscillations orchestrate human semantic networks during word list memory.
iScience. 2025 Mar 13;28(4):112171. doi: 10.1016/j.isci.2025.112171. eCollection 2025 Apr 18.
4
Neuronal traveling waves form preferred pathways using synaptic plasticity.
J Comput Neurosci. 2025 Mar;53(1):181-198. doi: 10.1007/s10827-024-00890-2. Epub 2024 Dec 27.
7
Transformers and cortical waves: encoders for pulling in context across time.
Trends Neurosci. 2024 Oct;47(10):788-802. doi: 10.1016/j.tins.2024.08.006. Epub 2024 Sep 27.
8
Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals.
bioRxiv. 2024 Aug 16:2024.08.15.607428. doi: 10.1101/2024.08.15.607428.

本文引用的文献

1
Distinct preplay of multiple novel spatial experiences in the rat.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):9100-5. doi: 10.1073/pnas.1306031110. Epub 2013 May 13.
2
Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.
Front Behav Neurosci. 2012 Dec 4;6:84. doi: 10.3389/fnbeh.2012.00084. eCollection 2012.
3
Hippocampal-cortical interaction during periods of subcortical silence.
Nature. 2012 Nov 22;491(7425):547-53. doi: 10.1038/nature11618.
4
Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2726-34. doi: 10.1073/pnas.1210929109. Epub 2012 Sep 10.
5
Two cortical systems for memory-guided behaviour.
Nat Rev Neurosci. 2012 Oct;13(10):713-26. doi: 10.1038/nrn3338.
6
The spiking component of oscillatory extracellular potentials in the rat hippocampus.
J Neurosci. 2012 Aug 22;32(34):11798-811. doi: 10.1523/JNEUROSCI.0656-12.2012.
7
Traveling theta waves along the entire septotemporal axis of the hippocampus.
Neuron. 2012 Aug 9;75(3):410-7. doi: 10.1016/j.neuron.2012.07.015.
8
Modeling the spatial reach of the LFP.
Neuron. 2011 Dec 8;72(5):859-72. doi: 10.1016/j.neuron.2011.11.006.
9
Coherent phasic excitation during hippocampal ripples.
Neuron. 2011 Oct 6;72(1):137-52. doi: 10.1016/j.neuron.2011.08.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验