Department of Physics, University of Central Florida , Orlando, Florida 32816, United States.
J Am Chem Soc. 2014 Nov 26;136(47):16473-6. doi: 10.1021/ja508879j. Epub 2014 Nov 17.
The electrocatalytic reduction of CO2 to industrial chemicals and fuels is a promising pathway to sustainable electrical energy storage and to an artificial carbon cycle, but it is currently hindered by the low energy efficiency and low activity displayed by traditional electrode materials. We report here the size-dependent catalytic activity of micelle-synthesized Au nanoparticles (NPs) in the size range of ∼1-8 nm for the electroreduction of CO2 to CO in 0.1 M KHCO3. A drastic increase in current density was observed with decreasing NP size, along with a decrease in Faradaic selectivity toward CO. Density functional theory calculations showed that these trends are related to the increase in the number of low-coordinated sites on small NPs, which favor the evolution of H2 over CO2 reduction to CO. We show here that the H2/CO product ratio can be specifically tailored for different industrial processes by tuning the size of the catalyst particles.
二氧化碳电化学还原为工业化学品和燃料是一种有前途的可持续电能存储和人工碳循环途径,但目前受到传统电极材料能量效率低和活性低的限制。我们在此报告了胶束合成的金纳米粒子(NP)在 1-8nm 范围内的尺寸依赖性催化活性,用于在 0.1 M KHCO3 中电化学还原 CO2 为 CO。随着 NP 尺寸的减小,电流密度急剧增加,同时 CO 的法拉第选择性降低。密度泛函理论计算表明,这些趋势与小 NP 上低配位位点数量的增加有关,这有利于 H2 的生成而不是 CO2 还原为 CO。我们在此表明,通过调整催化剂颗粒的尺寸,可以针对不同的工业过程专门调整 H2/CO 产物比。